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Introduction to Vectors and Tensors 
The physical quantities encountered in fluid mechanics can be classified into three 

classes: 

(a) Scalar - a quantity having magnitude but no direction,  such as pressure, density, 

viscosity, temperature, length, mass, volume and time; 

(b) Vector - (1st rank tensor) a quantity having magnitude and deriction, such as 

velocity, acceleration, displacement, linear momentum and force, and 

(c) Tensor- (2nd rank tensor) a quantity having magnitude and two directions (e.g. 

momentum flux, stress, rate of strain and vorticity). 

Vector Addition 
Given two arbitrary vectors a and b, by a+b we mean the vector formed by 

connecting the tail of a to the head of b when b is moved such that its tail coincides with 

head of a . A brief review of vector addition and multiplication can be found in 

Calculus, Thomas. 

 

 

 

 

1. Vector Multiplication 
Given two arbitrary vectors a and b, there are three types of vector products are defined: 

 Notation Result Definition 

Dot product a .b Scalar abcos θ 

Cross product a × b Vector ab|sinθ|n 

Dyadic product ab Tensor - 

where n is a unit vector which is normal to both a and b. 

a+ b 
a 

b 

θ 

a 

b 
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The sense of n is determined from the "right-hand rule". In the above definition, we 

denote the magnitude (or length) of vector a by the scalar a. Using the following 

notation: 

scalar = lightface Italic such us a 

vector = boldface Roman such as a 

tensor = boldface Greek such as τ 

Definition of Dyadic product 

The word "dyad" comes from Greek: "dy" means two while "ad" means adjacent. Thus 

the name dyad refers to the way in which this product is denoted: the two vectors are 

written adjacent to one another with no space or other operator in between. 

There is no geometrical picture that I can draw which will explain what a dyadic 

product. It's best to think of the dyadic product as a purely mathematical abstraction 

having some very useful properties: 

Dyadic Product ab - that mathematical entity which satisfies they following properties 

(where a, b, v, and w are any four vectors) 

1. ab.v=a(b.v) [which has the direction of a; note that ba.v=b(a.v) which has the 

dircetion of b]. Thus ab ≠ ba. 

2. v.ab=(v.a)b [Thus v.ab ≠ ab.v] 

3.  ab × v=a(b×v) which is another dyad 

4. v×ab=(v×a)b 

5. ab:vw=(a.w)(b.v) which is sometimes known as the inner-outer product or the 

double-out product. 

6. a(v+w)=av+aw (distribution for addition) 

7. (v+w)a=va+wa 

8. (s+t)ab=sab+tab (distribution for scalar multiplication) 

9. sab = (sa)b=a(sb) 

 

 

 3 



2. Decomposition into Scalar Components (System of Coordinates) 
A coordinate system in the three-dimensional space is defined by choosing a set of three 

linearly independent vectors, B={e1, e2, e3}, if none can be expressed as a linear 

combination of the other two (e.g. i, j, and k). The set B is a basis of the three-

dimensional space, i.e., each vector v of this space is uniquely written as a linear 

combination of this basis: 

1 1 2 2 3 3v v v= + +v e e e  

where the vi are called the scalar components of v. In most cases, the vectors e1, e2 and 

e3 are unit vectors. In the three coordinate systems, i.e., Cartesian, cylindrical and 

spherical coordinates, the three vectors are, in addition, orthogonal. Hence, in all these 

systems, the basis B={e1, e2, e3} is orthonormal: 

1
.

0
if
if

δ
=

=  ≠
i j ij

i j
e e

i j
 

where δ ij  is called the Kronecker delta. 

For the cross products of e1, e2 and e3, one gets: 
3

1

ε
=

× = ∑i j ijk k
k

e e e  

where ε ijk  is the permutation symbo or (Levi-Civita), defined as: 

1 ,if ijk = 123,231,or 312 (i.e,an even permutation of 123)
1 ,if ijk = 321,132,or 213 (i.e,an odd permutation of 123)

0 , if any two indices are equal
ε


≡ −


ijk  

The Cartesian (or rectangular) system of coordinates (x,y,z), with 

x , y and z−∞ < < ∞ − ∞ < < ∞ − ∞ < < ∞  

Its basis is often denoted by {i, j, k} or {ex, ey, ez}. The decomposition of a vector v into 

(vx, vy, vz) is depicted in figure (1). 
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Figure (1) Cartesian coordinate (x,y,z) 

The cylindrical and spherical polar coordinates are the two most important 
orthogonal curvilinear coordinate systems. The cylindrical polar coordinates  
(r, θ, z),with    r 0, 0 2 and zθ π≥ ≤ < − ∞ < < ∞  are shown in fig (2) 
 

 

 

 

 

 

 
 

Figure (2) Cylindrical polar coordinate (r,θ,z) 

By invoking simple trigonometric relations, any vector, including those of the bases, 
can be transformed from one system to another. Table (1) lists the formulas for making 
coordinate conversions from cylindrical to Cartesian coordinates and vice versa. 

 
Table (1) Relations between Cartesian and cylindrical polar coordinates. 
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The spherical polar coordinates (r,θ, φ) with r 0, 0 2 and 0 2θ π φ π≥ ≤ < ≤ <  

together with Cartesian coordinate with the same origin, are in figure (2). 

 

 

 

 

 

 
 

Figure (2) Spherical polar coordinate (r,θ,φ) 

The transformation of a vector from spherical to Cartesian coordinates (sharing the same 
origin) and vice-versa obeys the relations of Table (2). 

Table (2) Relations between Cartesian and spherical polar coordinates 

 

 

 

 

 

 

 

Example. Show that the basis B={er, eθ, ez} of the cylindrical system is orthonormal. 

Sol. since . . . 1 and . . . 0= = = = = =i i j j k k i j j k k i  , we obtain; 

( ) ( )

( ) ( )

2 2. cos sin . cos sin cos sin 1
.
. . 1
. cos sin . sin cos 0
.
.

θ θ

θ

θ

θ θ θ θ θ θ

θ θ θ θ

= + + = + =

=
= =

= + − + =

=
=

r r

z z

r

r z

z

e e i j i j
e e
e e k k
e e i j i j
e e
e e
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H.W. The position vector r defines the position of a point in space, with respect to 

coordinate system. In Cartesian coordinate, r = x i + y j + z k, show that in 

cylindrical coordinates, the position vector is given by r = r er + z ez,  and in 

spherical coordinate, r = r er. 

 In the following subsections, we will make use of the vector differential operator nabla 

(or del), ∇. In Cartesian coordinates, ∇ is defined by 

x y z
∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂

i j k  

The gradient of a scalar field  f (x, y, z) is a vector field defined by 

f f ff
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
i j k  

The divergence of a vector field v(x, y, z) is a scalar field defined by 

. yx zvv v
x y z

∂∂ ∂
∇ = + +

∂ ∂ ∂
v  

More details about ∇  and its forms in curvilinear coordinates are given in  

3. Tensors 
In the previous sections, two kinds of products that can be formed with any two 

unit basis vectors were defined, i.e. the dot product, ei · ej , and the cross product, ei × ej. 

A third kind of product is the dyadic product, eiej , also referred to as a unit dyad. The 

unit dyad eiej represents an ordered pair of coordinate directions. The nine possible unit 

dyads, {e1e1, e1e2, e1e3, e2e1, e2e2, e2e3, e3e1, e3e2, e3e3} 

A second-order tensor, τ , can thus be written as a linear combination of the unit dyads: 
3 3

1 1

τ τ
= =

= ∑∑ ij i j
i j

e e  

where the scalars τij are referred to as the components of the tensor τ . Similarly, a third-

order tensor can be defined as the linear combination of all possible unit triads eiejek, etc. 

Scalars can be viewed as zero-order tensors, and vectors as first-order tensors. 
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A tensor, τ , can be represented by means of a square matrix as 

( )
11 12 13 1

1 2 3 21 22 23 2

31 32 33 3

, ,
τ τ τ
τ τ τ
τ τ τ

   
  =         

e
e e e e

e
τ  

and often simply by the matrix of its components, 

11 12 13

21 22 23

31 32 33

τ τ τ
τ τ τ
τ τ τ

 
 =  
  

τ  

Note that the equality sign “=” is loosely used, since τ is a tensor and not a matrix. For a 

complete description of a tensor by means of matrix, the basis {e1, e2, e3} should be 

provided. 

The unit (or identity) tensor, I, is defined by 
3 3

1 1 2 2 3 3
1 1

δ
= =

= = + +∑∑ ij i j
i j

I e e e e e e e e  

Each diagonal component of the matrix form of I is unity and the non-diagonal 
components are zero: 

1 0 0
0 1 0
0 0 1

 
 =  
  

I  

The sum of two tensors, σ and τ , is the tensor whose components are the sums of the 

corresponding components of the two tensors: 

( )
3 3 3 3 3 3

1 1 1 1 1 1

σ τ σ τ
= = = = = =

+ = + = +∑∑ ∑∑ ∑∑ij i j ij i j ij ij i j
i j i j i j

e e e e e eσ τ  

The product of a tensor, τ , and a scalar, m, is the tensor whose components are equal to 

the components of τ multiplied by m: 

( )
3 3 3 3

1 1 1 1

m m mτ τ
= = = =

 
= =  

 
∑∑ ∑∑ij i j ij i j
i j i j

e e e eτ  
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The transpose, τT , of a tensor τ is defined by 
3 3

1 1

τ
= =

= ∑∑T
ji i j

i j

e eτ  

The matrix form of τT is obtained by interchanging the rows and columns of the matrix 

form of τ : 

11 21 31

12 22 32

13 23 33

τ τ τ
τ τ τ
τ τ τ

 
 =  
  

Tτ  

If τT=τ , i.e., if τ is equal to its transpose, the tensor τ is said to be symmetric. If τT=−τ , 

the tensor τ is said to be antisymmetric (or skew symmetric).  

The dyadic product of two vectors a and b can easily be constructed as follows: 

3 3 3 3

1 1 1 1

a b a b
= = = =

  
= =     

∑ ∑ ∑∑i i j j i j i j
i j i j

ab e e e e  

Obviously, ab is a tensor, referred to as dyad or dyadic tensor. Its matrix form is 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

a b a b a b
a b a b a b
a b a b a b

 
 =  
  

ab  

Note that ab ≠ ba unless ab is symmetric. Given that (ab)T=ba, the dyadic product of a 

vector by itself, aa, is symmetric.  

The unit dyads eiej are dyadic tensors, the matrix form of which has only one unitary 

nonzero entry at the (i, j) position. For example, 

2 3

0 0 0
0 0 1
0 0 0

 
 =  
  

e e  
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The most important operations involving unit dyads are the following: 

(i) The single-dot product (or tensor product) of two unit dyads is a tensor defined by 

( ) ( ) ( ) δ⋅ ≡ ⋅ =i j k l i j k l jk i le e e e e e e e e e  

This operation is not commutative 

(ii) The double-dot product (or scalar product or inner product) of two unit dyads is a 

scalar defined by; 

( ) ( ) ( )( ): δ δ≡ ⋅ ⋅ =i j k l i l j k il jke e e e e e e e  

It is easily seen that this operation is commutative. 

(iii) The dot product of a unit dyad and a unit vector is a vector defined by 

( ) ( ) δ⋅ ≡ ⋅ =i j k i j k ik ie e e e e e e  

or 

( ) ( ) δ⋅ ≡ ⋅ =i j k i j k ij ke e e e e e e  

Obviously, this operation is not commutative. 

Operations involving tensors are easily performed by expanding the tensors into 

components with respect to a given basis and using the elementary unit dyad operations. 

The most important operations involving tensors are summarized below. 

1. The single-dot product of two tensors (Tensor product) 

If σ and τ are tensors, then 

( ) ( )
3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1

3 3 3 3 3 3 3

1 1 1 1 1 1 1

3 3 3

1 1 1

k k

k

ι ι ι ι
ι ι

ι ι ι ι
ι ι

ι ι
ι

σ τ σ τ

σ τ δ σ τ

σ τ

= = = = = = = =

= = = = = = =

= = =

   
⋅ = ⋅ = ⋅       

= =

 
⋅ =   

 

∑∑ ∑∑ ∑∑∑∑

∑∑∑∑ ∑∑∑

∑∑ ∑

ij i j k k ij k i j k
i j i j

ij k jk i ij j i
i j i j

ij j i
i j

e e e e e e e e

e e e e

e e

σ τ

σ τ

 

The operation is not commutative. It is easily verified that   ⋅ = ⋅ =I Iσ σ σ  
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2. The double-dot product of two tensors (Scalar product) 
3 3

1 1

: σ τ
= =

= ∑∑ ij ij i j
i j

e eσ τ  

3. The dot product of a tensor and a vector (vector product) 

This is a very useful operation in fluid mechanics. If a is a vector, we have: 

( )
3 3 3 3 3 3

1 1 1 1 1 1

3 3 3 3 3

1 1 1 1 1

3 3

1 1

k

a a

a a

a

σ σ

σ δ σ δ

σ

= = = = = =

= = = = =

= =

   
⋅ = ⋅ = ⋅       

= =

 
⋅ =   

 

∑∑ ∑ ∑∑∑

∑∑∑ ∑∑

∑ ∑

ij i j k k ij k i j k
i j i j k

ij k ik k ij j ij i
i j k i j

ij j i
i j

a e e e e e e

e e

a e

σ

σ

 

Similarly, we find that 

3 3

1 1

aσ
= =

 
⋅ =   

 
∑ ∑ ji j i
i j

a eσ  

The vectors σ · a and a · σ are not, in general, equal. 

 

4. Index Notation and Summation Convention 
 So far, we have used three different ways for representing tensors and vectors: 

(a) the compact symbolic notation, e.g., u for a vector and τ for a tensor; 

(b) the so-called Gibbs’ notation, e.g., 
3 3 3

1 1 1

andu τ
= = =
∑ ∑∑i i ij i j
i i j

e e e  

for u and τ , respectively; and 

(c) the matrix notation, e.g., 

11 12 13

21 22 23

31 32 33

τ τ τ
τ τ τ
τ τ τ

 
 =  
  

τ                for τ . 

 11 



Very frequently, in the literature, use is made of the index notation and the so-

called Einstein’s summation convention, in order to simplify expressions involving 

vector and tensor operations by omitting the summation symbols. 

In index notation, a vector v is represented as 
3

1

v v
=

≡ =∑i i i
i

e v  

A tensor τ is represented as 
3 3

1 1

τ τ
= =

≡ =∑∑ij ij i j
i j

e e τ  

The nabla operator, for example, is represented as 
3

1i ix x x y z=

∂ ∂ ∂ ∂ ∂
≡ = + + = ∇

∂ ∂ ∂ ∂ ∂∑ i
i

e i j k  

where xi is the general Cartesian coordinate taking on the values of x, y and z. The 

unit tensor I is represented by Kronecker’s delta: 
3 3

1 1

δ δ
= =

≡ =∑∑ij ij i j
i j

e e I  

It is evident that an explicit statement must be made when the tensor τij is to be 

distinguished from its (i, j) element. 

With Einstein’s summation convention, if an index appears twice in an expression, 

then summation is implied with respect to the repeated index, over the range of that 

index. The number of the free indices, i.e., the indices that appear only once, is the 

number of directions associated with an expression; it thus determines whether an 

expression is a scalar, a vector or a tensor. In the following expressions, there are no free 

indices, and thus these are scalars: 
3

1

u v u v
=

≡ = ⋅∑i i i i
i

u v  

3 3

1 1

tr τ τ
= =

≡ =∑∑ii ii
i j

τ            trace for τ 
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3

1
32 2 2 2 2 2

2
2 2 2 2 2

1

x

i i

i i

uu u u u
x x x y z

f f f f f f f
x x x x x y z

=

=

∂∂ ∂ ∂ ∂
≡ = + + = ∇ ⋅

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
≡ = + + = ∇

∂ ∂ ∂ ∂ ∂ ∂ ∂

∑

∑

yi i z

i

i ii

u

or
 

where ∇  2 is the Laplacian operator to be discussed in more detail in Section (5). In the 

following expression, there are two sets of double indices, and summation must be 

performed over both sets: 
3 3

1 1

:σ τ σ τ
= =

≡ =∑∑ij ji ij ii
i j

σ τ  

The following expressions, with one free index, are vectors: 

3 3 3

1 1 1

u v u vε ε
= = =

 
≡ = ×  

 
∑ ∑∑ijk i j ijk i j k
k i j

e u v  

3

1i

f f f f f f
x x x y z=

∂ ∂ ∂ ∂ ∂
≡ = + + = ∇

∂ ∂ ∂ ∂ ∂∑ i
ii

e i j k  

3 3

1 1

v vτ τ
= =

 
≡ = ⋅  

 
∑ ∑ji j ii j i
i j

e τ v  

Finally, the following quantities, having two free indices, are tensors: 
3 3

1 1

3 3 3

1 1 1

u v u v

σ τ σ τ

= =

= = =

≡ =

 
≡ = ⋅ 

 

∑∑

∑∑ ∑

i j i j i j
i j

ik kj ik kj i j
i j k

e e uv

e e σ τ

 

3 3

1 1i i

u u
x x= =

∂ ∂
≡ = ∇

∂ ∂∑ ∑j j
i j

i j

e e u  

Note that ∇ u in the last equation is a dyadic tensor. 
N.B.  Some authors use even simpler expressions for the nabla operator. For 
example,∇・ u is also represented as ∂iui or ui,i ,with a comma to indicate the 

derivative, and the dyadic ∇ u is represented as ∂iuj or ui,j . 
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5. Differential Operators 
The nabla operator ∇, already encountered in previous sections, is a differential 

operator. In a Cartesian system of coordinates (x1, x2, x3), defined by the orthonormal 

basis (e1, e2, e3), 
3

1 2 3
1 2 3 1x x x x=

∂ ∂ ∂ ∂
∇ ≡ + + =

∂ ∂ ∂ ∂∑ i
ii

e e e e  

or, in index notation, 

x
∂

∇ ≡
∂ i  

The nabla operator is a vector operator which acts on scalar, vector, or tensor fields. The 

result of its action is another field the order of which depends on the type of the 

operation. In the following, we will first define the various operations of ∇ in Cartesian 

coordinates, and then discuss their forms in curvilinear coordinates. 

♦ The gradient of a differentiable scalar field f, denoted by ∇f or gradf, is a vector 

field: 
3 3

1 2 3
1 2 31 1

f f f ff f
x x x x x= =

 ∂ ∂ ∂ ∂ ∂
∇ ≡ = = + + ∂ ∂ ∂ ∂ ∂ 

∑ ∑i i
i ii i

e e e e e  

♦ The gradient of a differentiable vector field u is a dyadic tensor field: 

3 3 3 3

1 1 1 1

u
u

x x= = = =

   ∂∂
∇ ≡ =   ∂ ∂  

∑ ∑ ∑∑ j
i j j i j

i ii j i i

u e e e e  

 if u is the velocity, then ∇u is called the velocity gradient tensor. 

♦ The divergence of a differentiable vector field u, denoted by ∇ · u or div u, is a scalar 

field 

3 3 3
1 2 3

1 2 31 1 1

u u u uu
x x x x x

δ
= = =

  ∂ ∂ ∂ ∂ ∂
∇ ⋅ ≡ ⋅ = = + +    ∂ ∂ ∂ ∂ ∂   

∑ ∑ ∑ i
i j j ij

i ii j i

u e e  
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∇ · u measures changes in magnitude, or flux through a point. If u is the velocity, 

then ∇ · u measures the rate of volume expansion per unit volume; hence, it is zero for 

incompressible fluids. 

♦ The curl or rotation of a differentiable vector field u, denoted by ∇×u or curl u or 

 rot u, is a vector field: 

1 2 3
3 3

1 2 31 1

1 2 3

u
x x x x

u u u
= =

  ∂ ∂ ∂ ∂
∇ × ≡ × =    ∂ ∂ ∂ ∂   

∑ ∑i j j
ii j

e e e

u e e  

or 

3 2 1 3 2 1
1 2 3

2 3 3 1 1 2

u u u u u u
x x x x x x

     ∂ ∂ ∂ ∂ ∂ ∂
∇ × ≡ − + − + −     ∂ ∂ ∂ ∂ ∂ ∂    

u e e e  

The field ∇×u is often called the vorticity (or chirality) of u. 

♦ The divergence of a differentiable tensor field τ is a vector field: 

3 3 3 3 3

1 1 1 1 1x x
τ

τ
= = = = =

   ∂∂
∇ ⋅ ≡ ⋅ =    ∂ ∂   

∑ ∑∑ ∑∑ ij
k ij i j j

k ik i j i j

τ e e e e  

Example. Consider the position vector in Cartesian coordinates, 

r = x i + y j + z k . 

For its divergence and curl, we obtain: 

3x y z
x y z

∂ ∂ ∂
∇ ⋅ = + + ⇒ ∇ ⋅ =

∂ ∂ ∂
r r  

and  

0
x y z
x y z

∂ ∂ ∂
∇ × = ⇒ ∇ × =

∂ ∂ ∂

i j k

r r  
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Other useful operators involving the nabla operator are the Laplace operator ∇ 2 

and the operator u · ∇, where u is a vector field. The Laplacian of a scalar f with 

continuous second partial derivatives is defined as the divergence of the gradient: 
2 2 2

2
2 2 2
1 2 3

f f ff f
x x x

∂ ∂ ∂
∇ ≡ ∇ ⋅∇ = + +

∂ ∂ ∂
 

i.e.,                  
2 2 2

2
2 2 2
1 2 3x x x

∂ ∂ ∂
∇ ≡ ∇ ⋅∇ = + +

∂ ∂ ∂
 

 

For the operator u · ∇, we obtain: 

( )1 1 2 2 3 3 1 2 3
1 2 3

1 2 3
1 2 3

u u u
x x x

u u u
x x x

 ∂ ∂ ∂
⋅∇ ≡ + + ⋅ + + ∂ ∂ ∂ 

∂ ∂ ∂
∴ ⋅∇ = + +

∂ ∂ ∂

u e e e e e e

u
 

The above expressions are valid only for Cartesian coordinate systems. In 

curvilinear coordinate systems, the basis vectors are not constant and the forms of ∇ are 

quite different. Notice that gradient always raises the order by one (the gradient of a 

scalar is a vector, the gradient of a vector is a tensor and so on), while divergence 

reduces the order of a quantity by one. 

For any scalar function f  with continuous second partial derivatives, the curl of the 

gradient is zero, 

( ) 0f∇ × ∇ =         (1) 
For any vector function u with continuous second partial derivatives, the divergence 

of the curl is zero, 

( ) 0∇ ⋅ ∇ × =u       (2) 
Equations (1) and (2) are valid independently of the coordinate system. 

In fluid mechanics, the vorticity ω of the velocity vector u is defined as the curl 

of u,   ω ≡ ∇ × u  
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Example. 

(a) Express the nabla operator 

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

i j k      in cylindrical polar coordinates. 

(b) Determine ∇c and ∇ · u, where c is a scalar and u is a vector. 

(c) Derive the operator u · ∇ and the dyadic product ∇u in cylindrical polar coordinates. 

Sol. 

(a) From Table (1), we have: 

i = cos θ er − sin θ eθ    ,   j = sin θ er + cos θ eθ   and    k = ez 
Therefore, we just need to convert the derivatives with respect to x, y and z into 

derivatives with respect to r, θ and z. Using the chain rule, we get: 

sincos

cossin

r
x x r x r r

y r r

z z

θ θθ
θ θ

θθ
θ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = −

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

= = +
∂ ∂ ∂
∂ ∂

=
∂ ∂

 

Substituting now into nabla operator, gives 

( )

( )

sincos cos sin

cossin sin cos

r r

r r z

θ

θ

θθ θ θ
θ

θθ θ θ
θ

∂ ∂ ∇ = − − ∂ ∂ 
∂ ∂ ∂ + + + + ∂ ∂ ∂ 

r

r z

e e

e e e
 

After some simplifications and using the trigonometric identity sin2θ+sin2θ =1, we get 

1
r r zθθ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂r ze e e  

(b) The gradient of the scalar c is given by; 

1c c cc
r r zθθ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂r ze e e  
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For the divergence of the vector u, we have; 

( )1
ru u u

r r zθ θ θθ
∂ ∂ ∂ ∇ ⋅ = + + ⋅ + + ∂ ∂ ∂ 

r z r z zu e e e e e e  

Noting that the only nonzero spatial derivatives of the unit vectors are 

and θ
θθ θ

∂ ∂
= = −

∂ ∂
r

r
e ee e            we obtain; 

( )

( )

1

1 1

1

1 1

r z

r z

r z

z
r

u u uu u
r r z
u u uu u
r r r z
u u u u
r r r z

u uru
r r r z

θ θ
θ θ θ

θ
θ θ θ

θ

θ

θ θ θ

θ

θ

θ

∂ ∂ ∂ ∂ ∂ ∇ ⋅ = + + + ⋅ + ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂

= + + − ⋅ +
∂ ∂ ∂
∂ ∂ ∂

= + + +
∂ ∂ ∂
∂ ∂ ∂

∇ ⋅ = + +
∂ ∂ ∂

r
r

r r

r

e eu e e

e e e

u

 

(c)    ( ) 1
ru u u

r r zθ θ θθ
∂ ∂ ∂ ⋅∇ = + + ⋅ + + ∂ ∂ ∂ 

r z z r zu e e e e e e  

r z
uu u

r r z
θ

θ
∂ ∂ ∂

⋅∇ = + +
∂ ∂ ∂

u  

Finally, for the dyadic product ∇ u, we have; 

( )1

1 1 1 1 1

r

r

r

r

u u u
r r z

u u u
r r r

u u uu u
r r r r r
u u u
z z z

θ θ θ

θ
θ

θ θ
θ θ θ θ θ θ θ

θ
θ

θ

θ θ θ θ θ

∂ ∂ ∂ ∇ = + + + + ∂ ∂ ∂ 
∂ ∂ ∂

= + +
∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂

+ + +
∂ ∂ ∂

r z r z z

z
r r r r z

r z
r r z

z
z r z z z

u e e e e e e

e e e e e e

e ee e e e e e e e

e e e e e e
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1 1 1

r

r

r

u u u
r r r

u u uu u
r r r
u u u
z z z

θ
θ

θ
θ θ θ θ θ

θ
θ

θ θ θ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
∂ ∂ ∂   + − + + +   ∂ ∂ ∂   

∂ ∂ ∂
+ + +

∂ ∂ ∂

z
r r r r z

z
r r z

z
z r z z z

u e e e e e e

e e e e e e

e e e e e e
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The Conservation Equations In Fluid Mechanics 
 

The basic equation considered here are the three laws of conservation for physical 

systems: 

1. Conservation of mass (continuity) 

2. Conservation of momentum (Newton's second law) 

3. Conservation of energy (first law of thermodynamics) 

The three unknowns that must be obtained simultaneously from these three basic 

equations are the velocity u (three components), the thermodynamic pressure p, and the 

absolute temperature T. However, the final forms of the conservation equations also 

contain four other thermodynamics variables: the density ρ, the enthalpy h, and have 

two transport properties µ and k.  

1.2 Conservation of mass 
The first step in the derivation of the mass conservation equation is to write down a 

mass balance for the fluid element: 

Rate of increase of mass 

in fluid element = 
Net rate of flow of mass 

into fluid element 

The rate of increase of mass in the fluid element is; 

( ) ( )x y z x y z
t t

ρρ∂ ∂
∆ ∆ ∆ = ∆ ∆ ∆

∂ ∂
 

Next we need to account for the mass flow rate across a face of the element, which is 

given by the product of density, area and the velocity component normal to the face. 

From Figure (1). 

Net rate of flow of mass into the element = mass in flow - mass out flow 
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Mass in flow - Mass out flow = Rate of increase of mass 

The mass balance for the fluid element is given by; 

( ) ( )

( ) ( )

( ) ( ) ( )

u
u y z u x y z

x

v
v x z v y x z

y

w
w x y w z x y x y z

z t

ρ
ρ ρ

ρ
ρ ρ

ρ ρρ ρ

∂ 
∆ ∆ − + ∆ ∆ ∆ ∂ 

∂ 
+ ∆ ∆ − + ∆ ∆ ∆ ∂ 

∂  ∂
+ ∆ ∆ − + ∆ ∆ ∆ = ∆ ∆ ∆ ∂ ∂ 

 

Rearrangement the above equ. we have; 

( ) ( ) ( ) ( )u v w
x y z x y z

x y z t
ρ ρ ρ ρ∂ ∂ ∂  ∂

− + + ∆ ∆ ∆ = ∆ ∆ ∆ ∂ ∂ ∂ ∂ 
 

Finally, divided by the element volume, we get general form of continuity in Cartesian 

coordinate form as; 

( ) ( ) ( ) 0
u v w

t x y z
ρ ρ ρρ ∂ ∂ ∂∂

+ + + =
∂ ∂ ∂ ∂

           (1) 

 

 

 

In x - dir. 
 
 
In y - dir. 
 
 
In z - dir. 

Convective term 

 
the rate of change 

in time 
 

y 
x 

z 

uρ  

( )u
u x

x
ρ

ρ
∂

+ ∆
∂

 

wρ  

( )w
w z

z
ρ

ρ
∂

+ ∆
∂

 
( )v

v y
y
ρ

ρ
∂

+ ∆
∂

 

vρ  
x∆  

y∆  

z∆  

Fig. (1) Mass flows in and out of fluid element 

Velocities 
u in x direction 
v in y direction 
w in z direction 
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 Or In vector notation  

( ) ( )0 . 0
t t
ρ ρρ ρ∂ ∂

+ = + ∇ =
∂ ∂

div u or u  

where u i v j w k= + +u  is velocity vector in Cartesian coordinate. 

 Or in tensor notation              ( ), , 0uρ ρ+ =t i i  

Equation (1) is the unsteady, three-dimensional mass conservation or continuity 

equation for compressible fluid.  

For an incompressible fluid  and steady (i.e. a liquid) ρ = constant; 

                               div 0 . 0= ∇ =u or u  

Or in Cartesian coordinate system;     0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
  

Or  in tensor                                        i,i 0u =  
 

H.W Continuity in cylindrical Coordinate for fluid element 
 
 

 

 

 

 

 

 

 

 

 

Shows that: 
( ) ( ) ( )1 0

vv vv
t r r r z

θρρ ρρ ρ
θ

∂∂ ∂∂
+ + + + =

∂ ∂ ∂ ∂
r zr  

 

Or using velocity vector v v vθ θ= + +r r z zv e e e  and nabal operator in cylindrical 

coordinate as; 
1

r r zθθ
∂ ∂ ∂

∇ = + +
∂ ∂ ∂r ze e e  and sub. in ( ). 0

t
ρ ρ∂

+ ∇ =
∂

u . 

 

r  

z∆  

r∆  

θ∆  r θ∆  

vρ r  

( )v
v r

r
ρ

ρ
∂

+ ∆
∂

r
r  

vρ z  

( )v
v z

z
ρ

ρ
∂

+ ∆
∂

z
z  

( )v
v θ

θ
ρ

ρ θ
θ

∂
+ ∆

∂
 

v θρ  

r∆  

z∆  

r θ∆  
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H.W Continuity in spherical Coordinate for fluid element 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shows that: 

( ) ( ) ( )2

2

sin1 1 1 0
sin sin

v r vv
t r r r r

φθ
ρ ρρ θρ

θ θ θ φ

∂ ∂∂∂
+ + + =

∂ ∂ ∂ ∂
r

 

 

2.2 Conservation of Momentum 
Momentum equation are derived based on Newton's second Law of motion; 

m=∑ i iF a  

where ∑ iF = summation of forces in i- direction, 

 ai = acceleration in i- direction, 

m = mass of the fluid particle. 

Forces: there are two types of forces on fluid particle: 

Surface forces: There are acting on the surface of the element. surface forces are normal 

or tangential. (e.g. pressure forces, and viscous forces). 

Body forces: They are acting through the material of the element. (e.g. gravity force, 

centrifugal force, Coriolis force, and electromagnetic force). 

vρ r  

( )v
v r

r
ρ

ρ
∂

+ ∆
∂

r
r  

v φρ  

( )v
v φ

φ

ρ
ρ φ

φ
∂

+ ∆
∂

 

( )v
v θ

θ
ρ

ρ θ
θ

∂
+ ∆

∂
 

v θρ  

r∆  

r θ∆  

sinr φ θ∆  
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Herein, the following notation will be followed; 
σij & τij : i -represents the direction of the normal line to the surface on which the stress is acting. 

j - represents the stress direction. 

τ = tangential stress 
σ = normal stress. 

In order to apply Newton second law, it is required to obtain the resultant of forces 

in x-, y -, and z - direction; 

 To find net  Fx∑  forces; 

 

 

 

 

 

 

  

 

 

 

The resultant of surface forces in x-direction; 

F
2 2

2 2

2 2

xx xx
x xx xx

yx yx
yx yx

zx zx
zx zx

x xy z y z
x x

y yx z x z
y y

z zx y x y
z z

σ σσ σ

τ τ
τ τ

τ ττ τ

∂ ∆ ∂ ∆   = + ∆ ∆ − − ∆ ∆   ∂ ∂   
∂ ∂   ∆ ∆

+ + ∆ ∆ − − ∆ ∆   ∂ ∂   
∂ ∆ ∂ ∆   + + ∆ ∆ − − ∆ ∆   ∂ ∂   

 

F yxxx zx
x x y z

x y z
τσ τ∂ ∂ ∂

∴ = + + ∆ ∆ ∆ ∂ ∂ ∂ 
 

y 
x 

z 

2
xx

xx
x

x
σσ ∂ ∆

−
∂

 

x∆  
y∆  

z∆  
2

xx
xx

x
x

σσ ∂ ∆
+

∂
 

2
zx

zx
z

z
ττ ∂ ∆

+
∂

 

2
zx

zx
z

z
ττ ∂ ∆

−
∂

 

2
yx

yx
y

y
τ

τ
∂ ∆

−
∂

 

2
yx

yx
y

y
τ

τ
∂ ∆

+
∂
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The resultant of surface forces in x-direction per unit volume; 

f yxxx zx
x x y z

τσ τ∂∂ ∂
= + +

∂ ∂ ∂
 

Similarly; 

f xy yy zy
y x y z

τ σ τ∂ ∂ ∂
= + +

∂ ∂ ∂
 

f yzxz zz
z x y z

ττ σ∂∂ ∂
= + +

∂ ∂ ∂
 

Also, it is proved that;  for symmetrical stress; 

, , andxy yx yz zy zx xzτ τ τ τ τ τ= = =  

Body forces 

The mass of the fluid particle = x y zρ ∆ ∆ ∆  

let a body force per unit volume in x - direction = X , 

a body force per unit volume in y - direction = Y , 

a body force per unit volume in z - direction = Z. 

• If gravity is the only body force X = gρ x  

Fx∴∑ (per unit volume) = X yxxx zx

x y z
τσ τ∂∂ ∂

+ + +
∂ ∂ ∂

 

F∴∑ y (per unit volume) = Y xy yy zy

x y z
τ σ τ∂ ∂ ∂

+ + +
∂ ∂ ∂

 

F∴∑ z (per unit volume) = Z yzxz zz

x y z
ττ σ∂∂ ∂

+ + +
∂ ∂ ∂

 

Acceleration; 

Da
Dx

u
t

=       since ( )u=f x,y,z,t  
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u u u uu= t x y z
t x y z

u u u x u y u z=
t t x t y t z t

∂ ∂ ∂ ∂
∆ ∆ + ∆ + ∆ + ∆

∂ ∂ ∂ ∂
∆ ∂ ∂ ∆ ∂ ∆ ∂ ∆

+ + +
∆ ∂ ∂ ∆ ∂ ∆ ∂ ∆

 

, , 0
Lim

x y z

u u u u u= u v w
t t x y z∆ ∆ ∆ →

∆ ∂ ∂ ∂ ∂
+ + +

∆ ∂ ∂ ∂ ∂
 

x
Da
D

u u u u u= u v w
t t x y z

∂ ∂ ∂ ∂
∴ = + + +

∂ ∂ ∂ ∂
 

Similarly; 

y
Da
D

v v v v v= u v w
t t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 

z
Da
D
w w w w w= u v w
t t x y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂
 

 

 

Where 
D
Dt

 
 
 

 is called "Substantive derivative or Material derivative. 

Apply Newton second law in x - direction; 

x xF ma=∑     where the mass is; m x y zρ= ∆ ∆ ∆  

The above equation can be re-written per unit volume as; 

x(per unit volume) xF aρ=∑  

D X
D

yxxx zxu
t x y z

τσ τρ
∂ ∂ ∂

= + + + ∂ ∂ ∂ 
     in x-direction        …(1a) 

Similarly; 

D Y
D

xy yy zyv
t x y z

τ σ τ
ρ

∂ ∂ ∂ 
= + + + ∂ ∂ ∂ 

    in y-direction         …(1b) 

D Z
D

yzxz zzw
t x y z

ττ σρ
∂ ∂ ∂

= + + + ∂ ∂ ∂ 
    in z-direction         …(1c) 

Convective term 

 
Local Acc. 
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if the fluid is "frictionless" (µ = 0) all shearing stresses vanish ( )0xy yz xzτ τ τ= = = ; 

only the normal stresses remain in this case, and they are, moreover, equal. 

0 pii xx yy zzσ σ σ σ≠ ⇒ = = = −  

where p is "pressure" means the normal force per unit area acted on the fluid particle.  

As the fluid is static, the pressure of the fluid is called hydrostatic pressure. Since 

the fluid is motionless, the fluid is in equilibrium, therefore the;  

(Hydrostatic pressure = thermodynamic pressure) 

As the fluid is in motion, the 3 principal normal stresses are not necessary equal, 

and the fluid is not in equilibrium. Therefore, the hydrodynamic pressure is defined by 

Hydrostatic pressure ≡ ( )1 1 tr
3 3xx yy zzσ σ σ− + + = − τ  

and which is not equal to the thermodynamic pressure either. Later we will prove that 

Hydrostatic pressure) = thermodynamic pressure + 
1
3

λ′  

 

Rate of linear deformation 
The rate of linear deformation of a fluid element has none components in three 

dimensions, six of which are independent in isotropic fluids. 

the rate of elongation in the x- direction; 

xx

dxdt

dxdt

u
rate change of length ux

origin length x
ε

∂
∂∂= = =
∂

  

Similarly; 

yy
v
y

ε ∂
=

∂
   and  zz

w
z

ε ∂
=

∂
 

 

Volumetric deformation = ( )v xx yy zz div .ε ε ε ε= + + = = ∇v v  

dx 

y 

x 

dxdtu
x

∂
∂

  
A, A' 

D, D' 
C         C' 

B         B' 
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velocity strain  the rate of change in angle 

 

 

 

 

 
 

 

xy

u vdydt dxdt u v2
dydt dxdt
y x

y x
ε

∂ ∂
∂ ∂∂ ∂= + = +
∂ ∂

 

xy
1 u v ...(2a)
2 y x

ε  ∂ ∂
∴ = + ∂ ∂ 

 

Similarly; 

yz

zx

1 v w ...(2b)
2
1 w u ...(2c)
2

z y

x z

ε

ε

 ∂ ∂
= + ∂ ∂ 

∂ ∂ = + ∂ ∂ 

 

where; xy yx xz zx zy yz, , andε ε ε ε ε ε= = =  
 

Stress - strain relation 

Solids  when an elastic solid is subjected to normal stresses xx yy zz, ,andσ σ σ  , the 

corresponding strain; 

( )( )
( )( )

( )( )

xx xx yy zz

yy yy xx zz

xx zz xx yy

1 ...(3a)
E
1 ...(3b)
E
1 ...(3c)
E

ε σ υ σ σ

ε σ υ σ σ

ε σ υ σ σ

= − +

= − +

= − +

 

( )( )v xx yy zz
1 1 2
E

ε υ σ σ σ∴ = − + +  

dx 

dy 

y 

x 

u dydt
y

∂
∂

  

γxy 

dx 

dy 

y 

x 

v dxdt
x

∂
∂

  
γyx 

y 

x 
γyx 

γxy 

A, A' A, A' A, A' 

D, D' 

B' 

C' 

D' 

C' 

C 

B 

B' 

B, B' 

C          C' 
D' D 
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( )
v

xx yy zz
E 3 ...(4)

1 2
εσ σ σ σ

υ
∴ + + = =

−
 

where, σ = the average of normal stresses xx yy zz

3
σ σ σ+ +

=  

The modulus of shear is; 
( )

EG
2 1 υ

=
+

 

From eq. (4) we have ;   
( )

( ) v
12G ...(5)

3 1 2
υ

σ ε
υ

+
=

−
 

where the stress in terms strain, from elastic solid; 

 ( )( ) ( ) ( )

( )

xx xx yy zz

xx xx xx yy zz

E 1
1 1 2

2G 2G ...(6)
1 2

σ υ ε υ ε ε
υ υ

υσ ε ε ε ε
υ

 = − + + + −

∴ = + + +
−



 

Subtract eq. (5) from eq. (6), gives; 

( )
( )xx xx v v

12G2G 2G
1 2 3 1 2

υυσ σ ε ε ε
υ υ

+
− = + −

− −
 

From the above eq., we have; 

xx xx v
22G G ...(7a)
3

σ σ ε ε− = −  

Similarly; 

yy yy v

zz zz v

22G G ...(7b)
3
22G G ...(7c)
3

σ σ ε ε

σ σ ε ε

− = −

− = −
 

Shear stresses; 

xy xy
u v2G G ...(8a)
y x

τ ε  ∂ ∂
= = + ∂ ∂ 

 

yz
v wG ...(8b)
z y

τ  ∂ ∂
= + ∂ ∂ 

 

xy
w uG ...(8c)
x z

τ ∂ ∂ = + ∂ ∂ 
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Fluid; 
Stress - rate of strain relation; 

For fluid G is replaced by µ and strain is replaced by rate of strain. Also take 
pσ = − , i.e., the average normal stress represents the normal pressure. Therefore Eqs. 

(7) and (8) can be written as; 

xx xx
u 2 u v w u 2p 2 p 2 div
x 3 x y z x 3

σ µ µ σ µ µ ∂ ∂ ∂ ∂ ∂
= − + − + + ⇒ = − + − ∂ ∂ ∂ ∂ ∂ 

V  

( )xx
u 2p 2 . ...(9a)
x 3

σ µ µ∂ ∴ = − + − ∇ ∂ 
V  

Similarly; 

( )yy
v 2p 2 . ..(9b)
y 3

σ µ µ ∂
= − + − ∇ ∂ 

V  

( )zz
w 2p 2 . ...(9c)
z 3

σ µ µ∂ = − + − ∇ ∂ 
V  

and; 

xy
u v ...(10a)
y x

τ µ  ∂ ∂
= + ∂ ∂   

yz
v w ...(10b)
z y

τ µ  ∂ ∂
= + ∂ ∂   

xy
w u ...(10c)
x z

τ µ ∂ ∂ = + ∂ ∂   
Sub. of Eqs. (9) and (10) into Eq. (1) yields; 

u u u u p u 2u v w X 2 div
t x y z x x x 3

u v w u (11a)
y y x z x z

x-dir.

ρ µ

µ µ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + + = − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
  ∂ ∂ ∂ ∂ ∂ ∂  + + + +     ∂ ∂ ∂ ∂ ∂ ∂    

V

 
v v v v p v 2u v w Y 2 div
t x y z y y y 3

u v w u (11b)
x y x z x z

y-dir.

ρ µ

µ µ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

  ∂ ∂ ∂ ∂ ∂ ∂  + + + +     ∂ ∂ ∂ ∂ ∂ ∂    

V
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w w w w p w 2u v w Z 2 div
t x y z z z z 3

w u v w (11c)
x x z y z y

z-dir.

ρ µ

µ µ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + + = − + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
  ∂ ∂ ∂ ∂ ∂ ∂  + + + +     ∂ ∂ ∂ ∂ ∂ ∂     

V

 
The above equation are momentum equations, in x-, y -, and z- directions or; they are 

called "Navier-Stokes equations" (NSE) or equations of motion. 

where the body forces x y zX = g , Y g , and Z gρ ρ ρ= =  (if gravity effect only ) 

• There are 3 Spatial (z, y, z) + 1 temporal (t) variables = 4 independent variables 

• There are 3 velocity components (u, v, w) + pressure + density _ viscosity = 6 

dependent variables. 

• Navier Stokes equations (3) + Continuity equation (1) + Equation of state (1) 

2.3 Conservation of Energy 
For incompressible viscous flow , the energy equation is; 

P
T T T T T T Tc u v w k k k
t x y z x x y y z z

ρ µ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + = + + + Φ      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      
 

For constant properties (k = constant), yields; 
2 2 2

P 2 2 2
T T T T T T Tc u v w k
t x y z x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = + + + Φ  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

  

Where; 
2 2 22 2 2u v w v u w v u w2

x y z x y y z z x

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     Φ = + + + + + + + +           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            
 

Φ = the viscous - dissipation heat  (using this term for high Re) 

cp = specific heat, and k = thermal conductivity. 

 

Convective heat 

 
Condition heat 

 

Viscous heat 
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Characteristics of NSEs. 

♦ Non-linear equations 

♦ Partial differential equations 

♦ Used for; - compressible and uncompressible flows 

- viscous flow 

- three dimensional flow system 

- time dependent  unsteady flow system. 

2.4 The NSEs in Vector and Tensor Forms 
Can be rewriting the NSEs in general form in vector forms: 

( )DV g p .
Dt

ρ ρ= − ∇ + ∇ τ  

where ( )( ) ( )T 2 .
3

µ µ= − ∇ + ∇ + ∇τ V V V  

and the term ( )( )T∇ + ∇V V  is rate of strain 

Tensor form: 

( )i,t j i, j i ij, ju u u gρ ρ σ+ = +  

where ( )ij ij i, j j,i ij kk
2P u u u
3

σ δ µ µδ= − + + −  

( ) ( )i,t j i, j i ij , j i, j j,i ij kk
, j

2u u u g P u u u
3

ρ ρ δ µ µδ + = + − + + −  
 

Energy Equation: 

Vector form:                      [ ]P
DTc .k T :
Dt

ρ µ= ∇ ∇ + ∇τ V  

for constant properaties (k = cont.) 

[ ]2
P

DTc k T :
Dt

ρ µ= ∇ + ∇τ V  
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2.4.1 Simplifications for NSEs 

(i) For incompressible flow (ρ = c) and negligible body forces 

continuity eq. in vector form as ; ( ). 0
t
ρ ρ∂

+ ∇ =
∂

V  

(ii) For incompressible and steady flow with negligible body forces; 

• Continuity eq. in vector form . 0∇ =V  or tensor form as  i,i 0u =  

• NSE in vector form as; 

( ) ( ). u p .ρ ∇ = −∇ + ∇V τ  

where ( )( )Tµ= − ∇ + ∇τ V V  

• In Cartesian coordinate for x-dir. as;  

u u u p uu v w 2
x y z x x x

u v w u
y y x z x z

ρ µ

µ µ

 ∂ ∂ ∂ ∂ ∂ ∂  + + = +     ∂ ∂ ∂ ∂ ∂ ∂   
  ∂ ∂ ∂ ∂ ∂ ∂  + + + +     ∂ ∂ ∂ ∂ ∂ ∂    

 

Similarly for equation of motion in y and z 

• NSE in Tensor form 

( ) ( )j i, j ij , j i, j j,i , j
u u P u uρ δ µ = − + +   

(iii) For incompressible with Newtonian fluid (µ = constant) and unsteady flow.  

( )2DV p
Dt

ρ µ= −∇ + ∇ V  

Steady flow                         ( ) ( )2. u pρ µ∇ = −∇ + ∇V V  

• Tensor form: 

( )j i, j ij , j i, jju u P uρ δ µ= − +  
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In Cartesian coordinate in x-dir 

2 2 2

2 2 2
u u u p u u uu v w
x y z x x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

Similarly for y & z directions 

(iv) For frictionless (τ = 0) for unsteady with body forces the term ( ). 0∇ =τ  

DV g p
Dt

ρ ρ= − ∇  

This equation is the famous Euler equation, first derived in 1755. It has been widely 

used for describing flow systems in which viscous effects are relatively unimportant. 

(ideal flow). 

(v) For two dimension (2D) flow in x-y plane; w=0 and there are no variations with 

respect to z; 

2 2

x 2 2
u u u p u uu v g
t x y x x y

ρ ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +  ∂ ∂ ∂ ∂ ∂ ∂   
     x-dir. 

2 2

y 2 2
v v v p v vu v g
t x y y x y

ρ ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂

+ + = − + +  ∂ ∂ ∂ ∂ ∂ ∂   
     y-dir. 

where 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
  Laplace operator in 2D 

2.5 Types of Coordinate Systems 
There are two types of coordinate systems using for fluid flow; 

1- Cartesian coordinate system (x, y, z), 

2- Cylindrical coordinate system (r, θ, z). 

The relation between the above two system is mentioned in previous section (table 1). 

Also, Cylindrical coordinate system is divided into; 

I - Polar coordinate system (r, θ) (There is no variation with respect to z) 

II- Axisymmetrical coordinate system (r, z) (There is no variation with respect to θ) 
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2.6 The NSEs in Cylindrical coordinate 

If r, q, and z are the 3-D cylindrical coordinate and vr, vθ, and vz denote the velocity 

components in the respective directions, 

• For Newtonian (µ = cont.), incompressible viscous flow, steady, Navier stokes 

equations are; 

( )
2 2

r r r r
r z r r 2 2

2
r

2 2

v vv v v p 1 1 vv v g rv
r r z r r r r r r

vv 2 r dir
z r

θ θ

θ

ρ ρ µ
θ θ

θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + − = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∂∂

+ − −∂ ∂ 

 

( )
2

r
r z 2 2

2
r

2 2

v v v v v v v1 p 1 1v v g rv
r r z r r r r r r

v 2 v dir
z r

θ θ θ θ θ θ
θ θ

θ

ρ ρ µ
θ θ θ

θ
θ

 ∂ ∂ ∂ ∂∂ ∂ ∂  + + + = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∂ ∂

+ + −∂ ∂ 

 

2 2
z z z z z z

r z z 2 2 2

vv v v p 1 v 1 v vv v g r z dir
r r z z r r r r z

θρ ρ µ
θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + = − + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

• Continuity eq. 

1 0v v v v
r r r z

θ

θ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

r r z  

• The stress components in cylindrical coordinate as; 

2 v
r

τ µ ∂
=

∂
r

rr                 , r12 v v
r r

θ
θθτ µ

θ
∂ = + ∂ 

         and       z
zz 2 v

z
τ µ ∂

=
∂

 

r
r

v 1r
r r

v
r

θ
θτ µ

θ
∂ ∂  = +  ∂ ∂  

 

z
z

v 1
z r

vθ
θτ µ

θ
∂ ∂ = + ∂ ∂ 

 

r z
rz

v
z r

vτ µ ∂ ∂ = + ∂ ∂ 
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Axisymmetric Problems 

Here, vθ = 0 and there is no variation with respect to θ = 0. Equation of motion are; 
2 2

r r r r r r
r z r 2 2 2

v v p v 1 v v vv v g r dir
r z r r r r r z

ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ + = − + + − + −   ∂ ∂ ∂ ∂ ∂ ∂   

 

2 2
z z z z z

r z z 2 2

v v p v 1 v vv v g z dir
r z z r r r z

ρ ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ + = − + + + −   ∂ ∂ ∂ ∂ ∂ ∂   

 

• Continuity eq. 

0v v v
r r z

∂ ∂
+ + =

∂ ∂
r r z  

• The stress components in cylindrical coordinate as; 

2 v
r

τ µ ∂
=

∂
r

rr                 , r2 v
rθθτ µ  =  

 
         and       z

zz 2 v
z

τ µ ∂
=

∂
 

r 0θτ =  

z 0θτ =  

r z
rz

v
z r

vτ µ ∂ ∂ = + ∂ ∂ 
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Boundary conditions for viscous fluid flow 
The equations of motions will require mathematically tenable and physically 

realistic boundary conditions. The fluid flow, there are five types of boundary 

considered: 

1. A solid surface (which may be porous) 

2. A free liquid surface 

3. A liquid - vapour interface 

4. An inlet or exit section 

 

(i) Conditions at a Solid surface 
Wall boundary conditions depend upon whether the fluid is a liquid or gas. For 

macroflows, system dimensions are large compared to molecular spacing, so that both 

liquid and gas particles contacting the wall must essentially be in equilibrium with the 

solid.  For the solid surface; 

fluid solV V=    ( no-slip condition) 

fluid solT T=    ( no-temperature-jump condition) 

However, certain liquid/solid combinations are known to slip under small-scale 

microflow conditions. One way to characterize slip in liquid is the slip length Lslip 

relating slip velocity to the local velocity gradient, a model first suggested by Navier 

himself: 

wall slip
wall

uu L
n

∂ =  ∂ 
 

The slip length depends upon the liquid, the geometry, and the shear rate. 

In many cases, of course, the coordinate system is such that the wall is stationary, so 

that the velocity conditions is simply Vfluid = 0. 
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Conditions at a Permeable Wall 

In the event that the wall is porous and can permit fluid to pass through. The proper 

conditions are complicated by the type of porosity of the wall, but in general, we 

assume; 

V 0tangential =    ( no-slip condition) 

normalV 0≠    ( Flow through wall) 

 The temperature condition is also complicated by a porous wall. 

 For wall suction, where the fluid leaves the main flow and passes into the wall, we 

assume; 

wT TFluid =     (suction) 

 For injection through a porous wall into the main stream (sometime called 

transpiration), the injected fluid may be, say a coolant at a temperature. A good 

approximation using; 

( )w n w coolant
w

dTk V Cp T T
dy

ρ≈ −     (Injection) 

where w nVρ is the mass flow of coolant per unit area through the wall. 

(ii) Conditions at a Free Liquid Surface 
There are many flow problems where the liquid fluids ends, not at a solid wall, but 

at an open or free surface exposed to an atmosphere of either gas or vapor. Two cases 

1. The ideal or classic free surface that exerts only a known pressure on the liquid boundary. 

2. Complicated case where the atmosphere exerts not only pressure but also shear, heat flux, 

and mass flux at the surface. 

 

 

 

ideal free surface, ( )z x,yη=  
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In ideal free surface, the two required conditions: 

(1) The fluid particles at the surface must remain attached (Kinematic condition). 

(2) The liquid and the atmospheric pressure must balance except for surface-tension effects. 

( ) Dw x,y, u v
Dt t x y

η η η ηη ∂ ∂ ∂
= = + +

∂ ∂ ∂
 

The pressure equilibrium;      ( ) a
x y

1 1p x,y, p
R R

η τ
 

= − +  
 

 

where Rx and Ry are the radii of curvature of the surface and 

          τ : is the coefficient of surface tension of the interface. (N/m) 

For 2D surface ( )xη η=  only the above eq. becomes; 

( )
( )

2 2

a 3/22

d dxp x, p
1 d dx

τ ηη
η

= −
 + 

 

We see from this relation that, 

at  ap p<   (concave upward, positive curvature) smile interface 

at  ap p>   (concave downward) frowning interface 

Note:  

In large-scale problems, such as open-channel or river flow, the free surface deforms 

only slightly and surface tension effects are negligible; 

aw and p p
t
η∂

≈ ≈
∂

 

(iii) Conditions at a Liquid-vapor of Liquid-Liquid interface 
The term free surface means that the gas lying over the liquid has no effect except to 

impose pressure on the interface. Heat transfer and shear effects are negligible. 

In a true liquid-vapor or liquid-liquid interface, the upper fluid is strongly coupled 

and exerts kinematic, stress, and energy constraints on the lower fluid. The motions of 

the two fluids are solved simultaneously and must match in certain ways at the interface. 
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at true fluid-fluid interface :    1 2 1 2 1 2V V , , T Tτ τ= = =  

the normal velocities match;    n1 n2V V=  

the tangential velocities also match;  t1 t2V V=  

Although velocities and temperature are continuous across the interface, their slopes 

generally do not match because of differing transport coefficients; 

  

t1 t2
1 1 2 2

1 2
1 1 2 2

V V
n n
T Tq k q k
n n

τ µ τ µ∂ ∂
= = =

∂ ∂
∂ ∂

= − = = −
∂ ∂

 

where n is the coordinate normal to the interface. The slopes are not equal if 1 2µ µ≠  or 1 2k k≠  

 

 

 

 

 

 

 

 

 

Since k and µ for a vapor are usually much smaller than for a liquid, we can often 

approximate liquid conditions at the interface as; 

t

liq liq

V T0 0
n n

∂ ∂
≈ ≈

∂ ∂
 

Finally, if there is evaporation, condensation, or diffusion at the interface, the mass 

flows must also balance, 1 2m m=   
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(iv) Inlet and Exit boundary conditions 
At the inlet, we would specify the distributions of V, T, and P. Often the inlet 

pressure is assumed uniform as a simplification. At the exit, we specify V and T. No exit 

condition is required upon P, which is then found from the solution. 
 

(v) conditions at a Symmetry plane 
The symmetry plane boundary condition imposes constraints that ‘mirror’ the flow 

on either side of it. The symmetry boundary condition can therefore be summarized as 

follows: 

 zero normal velocity at a symmetry plane; 

nV 0=  

 zero normal gradients of all scalar variables at a symmetry plane; 

0
n
φ∂

=
∂
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Exact Solutions of Navier-Stokes Equations 
 

The NSEs for a general viscous flow are nonlinear partial differential equations, for 

most applications, it is impossible to obtain solution for the complete NSEs, even for 

constant property flows. In most flow, problems simplifying assumptions are made so 

that approximate solution can be obtained in order to generate design information.  

As we might expect, almost all the known particular solutions are for 

incompressible Newtonian flow with constant transport properties, for which the basic 

equations of continuity, NSEs, and energy reduce to; 

Continuity:                              . 0∇ =V                                          (3.1) 

Momentum :                         ( )2
i

DV g p
Dt

ρ ρ µ= − ∇ + ∇ V         (3.2) 

Where Φ = the viscous - dissipation heat  (using this term for high Re) 

Basically, there are two types of exact solution of Eq. (3.2) 

I - Linear solution, where the convective acceleration ( ).∇V  vanishes. 

ii- Non-linear solution, where ( ).∇V  does not vanish. 
It is also possible to classify solution by the type or geometry of flow involved: 

3.1 Couette (wall-driven) steady flow. 

(i) Steady flow between a fixed and moving plate 

In figure (1), two infinite plate are 2H apart, and the upper plate moves at speed U1 

relative to the lower. The pressure p is assumed constant. These boundary conditions are 

independent of x or z (infinite plate). 

Take the NSE for one dimensional steady flow for incompressible fluid in x-dir. only, 
2 2 2

x 2 2 2
u u u p u u uu v w g
x y z x x y z

ρ ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

Can be simplification, 

v = w = 0, and 
u 0
z

∂
=

∂
,  
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No body force, ρgx=0, and  because p = c yield to 
p 0
x

∂
=

∂
 

The continuity , and momentum can be reduce as; 

Continuity eq.    
u 0
x

∂
=

∂
                           (1) 

Momentum eq.       
2

2
u0

y
µ ∂

=
∂

                   (2) 

 

 

 

 

 

 

Using eq. (2)  
2 2

1 1 22 2
u u0 c u c y c (4)

y y
µ ∂ ∂

= → = → = +
∂ ∂

∫ ∫       

B.C. (1) at y = -H , u = 0, 

1 2 1 2 2 1u c y c 0 c H c c c H= + → = − + → ∴ =  

B. C. (2) at y = H, u = U1 

1 1
1 1 1 1 2

U UU c H c H c and c
2H H

= + → ∴ = =  Subs. in eq. (4) 

The velocity distribution as; 

1U yu 1
2 H

 ∴ = + 
 

 

To find the shear stress  

xx xx
u2 0
x

τ µ τ∂
= →∴ =

∂
 

y = H, u=U1 

y = - H, u=0 

Moving 

x 

y 

Fixed 

2H 
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xy yx xy yx

xz zx xz zx

u v U const.
y 2H
u w 0
z

x

x

τ τ µ τ τ µ

τ τ µ τ τ

 ∂ ∂
= = + → ∴ = = = ∂ ∂ 

∂ ∂ = = + →∴ = = ∂ ∂ 

 

The shear stress is constant throughout the fluid flow. 

H.W. find the velocity distribution and shear stress for the about Ex. with p = variable 

with x-dir. 
p 0
x

∂
≠

∂
 

(ii) Axially moving concentric cylinders 

Consider two long concentric cylinder with a viscous fluid between them, as in figure 

below, Let with the inner ( r = r1) cylinder move axially at u = U1 or the outer (r = r2) 

cylinder move at u = U2, as shown. the pressure gradient and gravity are assumed to be 

negligible. The no-slip condition will set the fluid into steady motion u(r), and uθ and ur 

will be zero.  

 

Continuity eq.       

1 0

0

v v v v
r r r z

vReduce to
z

θ

θ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

∂
∴ =

∂

r r z

z
 

 

 

Take momentum eq. in z - dir. only 
2 2

z z z z z z
r z z 2 2 2

vv v v p 1 v 1 v vv v g r z dir
r r z z r r r r z

θρ ρ µ
θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + = − + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
reduce to  

z1 v0 r
r r r

∂ ∂ =  ∂ ∂ 
      (1) 

r =
 r 1

 

z 

r 

r =
 r 2
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Using eq. (1)  

z z
1 z 1 2

v vr 0 r c v c ln r c (2)
r r r

∂ ∂ ∂  = → = → = + ∂ ∂ ∂ 
∫ ∫  

(1) If the inner cylinder moves, and outer cylinder fixed (no-slip condition) 

Apply the B.C. (1) at r = r2 , vz = 0  

z 1 2 1 2 2 2 1 2v c ln r c 0 c ln r c c c ln r= + ⇒ = + → ∴ = −  

Apply the B.C. (2) at r = r1 , vz = U1  

1
z 1 1 2 1 1 1 1 2 1

2

rv c ln r c ln r U c ln r c ln r c ln
r

= − ⇒ = − =  

1
1 2 1 1

1

2

Uc and c c ln rrln
r

∴ = = −      subs. in eq. (2) 

( ) ( ) ( ) ( )1 1 1
z 1 1

1 1 12 2 2

U U Uv ln r ln r ln r ln r
ln r r ln r r ln r r

= − = −  

The velocity distribution is 
( )
( )

1
z 1

2 1

ln r r
v U

ln r r
∴ =  

• The stress components in cylindrical coordinate as; 

z
zz zz2 0v

z
τ µ τ∂

= → ∴ =
∂

 

z
z z

v 1 0
z r

vθ
θ θτ µ τ

θ
∂ ∂ = + →∴ = ∂ ∂ 

 

( )
r z 1

rz rz
2 1

v U
z r r ln r r

v µτ µ τ∂ ∂ − = + →∴ = ∂ ∂ 
 

 

H.W Find velocity distribution at inner cylinder is fixed and outer cylinder is moved. 
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(iii) Flow between rotating concentric cylinders 

Consider the steady flow maintained between two concentric cylinders by steady 
angular velocity of one or both cylinders. Let the inner cylinder have radius r1, angular 

velocity ω1, and the outer cylinder has r2, ω2, respectively. The geometry is such that the 

only nonzero velocity component is vθ and the variable vθ and p must be functions only 
of radius r. The equations of motion in polar coordinates  

Continuity eq.    
1 0 0v v v v v

r r r z
θ θ

θ θ
∂ ∂ ∂ ∂

+ + + = → ∴ =
∂ ∂ ∂ ∂

reduce tor r z  

Momentum eq.  

( )
2 2

r r r r
r z r r 2 2

2
r

2 2

v vv v v p 1 1 vv v g rv
r r z r r r r r r

vv 2 r dir
z r

θ θ

θ

ρ ρ µ
θ θ

θ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  + + − = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∂∂

+ − −∂ ∂ 

 

Reduce to   
2v p r dir.

r r
θρ ∂

= −
∂

 

( )
2

r
r z 2 2

2
r

2 2

v v v v v v v1 p 1 1v v g rv
r r z r r r r r r

v 2 v dir
z r

θ θ θ θ θ θ
θ θ

θ

ρ ρ µ
θ θ θ

θ
θ

 ∂ ∂ ∂ ∂∂ ∂ ∂  + + + = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∂ ∂

+ + −∂ ∂ 

 

Reduce to      ( )
2

2

v v10 rv 0 dir
r r r r r r

θ θ
θ θ∂∂ ∂ ∂   = → + = −   ∂ ∂ ∂ ∂   

 

With boundary conditions 

At r = r1:       vθ = r1ω1    ,  p = p1 

At r = r2:       vθ = r2ω2     
Show that the solution to the q -dir. of momentum equation has the form 

2
1

cv c r
rθ = +  

After find c1 and c2 from the boundary conditions. The velocity distribution as; 

12 2 1
1 1 2 2

2 1 2 2 1 21 1

r r r rr r r rv r r
r r r r r r r rθ ω ω

−−
= +

− −
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Some special cases are of interest. In the limit as the inner cylinder vanishes  

(r1 = w1 = 0) show that the velocity distribution as; 

2v rθ ω=  

3.2 Poiseuille (pressure-driven) steady duct flows. 

Whereas Couette flows are driven by moving walls, Poiseuille flows are generated 

by pressure gradients, with applications primarily to ducts. They are named after  

J.L. Poiseuille (1984), as a French physician who experimented with low speed flow in 

tubes. 

(i) Steady flow between two fixed parallel plates (Fully-developed plane Poiseuille flow) 

When a liquid is forced between two stationary infinite plates are 2H apart, under 

constant pressure gradient δp/δx and zero gravity. For steady state. 

The continuity , and momentum can be reduce as; 

Continuity eq.                 
u 0
x

∂
=

∂
                           (1) 

Momentum eq.       
2

2
p u0
x y

µ∂ ∂
= − +

∂ ∂
                   (2) 

Using eq. (2)  

2 2

1 1 22
u p u 1 p 1 p ydy dy y c u c y c

y x y x x 2
µ

µ µ
 ∂ ∂ ∂ ∂ ∂ = → = + ⇒ = + +  ∂ ∂ ∂ ∂ ∂   ∫ ∫       

B.C. (1) at y = - H , u = 0, 

       (2) at y = H , u =0 

Show that parabolic velocity profile after apply the boundary conditions as;  

( )2 21 pu H y
2 xµ

∂
= − −

∂
 

If the pressure gradient is negative, then the flow is in the positive direction. 

Maximum flow velocity is at the center; ( y = 0) 

2
max

1 pu H
2 xµ

∂
= −

∂
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To find the velocity average  

The volumetric flow rate per unit width is 

( )
H H

2 2

H 0

1 pQ udy 2 H y dy
2 xµ

−

∂
= = − −

∂∫ ∫  

Show that   32 pQ H
3 xµ

∂
= −

∂
        (4) 

From the above equ.(4) indicates that the volumetric flow rate Q is proportional to the 

pressure gradient, ∂p/∂x, and inversely proportional to the viscosity µ. Note also that, 

since ∂p/∂x is negative, Q is positive. The average velocity uave in the channel is 

ave
Q Qu
A 2H

= = ⇒      2
ave

1 pu H
3 xµ

∂
∴ = −

∂
 

ave

max

u 2
u 3

∴ =  

To find the shear stress distribution is given by  

xy yx w xy yx
u v p y
y xx

τ τ µ τ τ τ ∂ ∂ ∂
= = + → ∴ = = = ∂ ∂ ∂ 

 

i.e τxy varies linearly with y 

 τxy = 0 at the centerline ( y = 0) 

τxy  maximum absolute at the wall (y = H or y = - H) 

max xy y H

p H
x

τ τ
=

∂
= =

∂
 

H.W Consider steady flow between two parallel inclined plates, with constant pressure 
gradient and gravity. The distance between the two plates is 2H. The angle formed by 
the two plates and the horizontal direction is θ. Find velocity distribution. 

Ans.  ( )2 21 pu gsin H y
2 x

ρ θ
µ

∂ = − + − ∂ 
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(ii) For Circular pipe (Fully-developed axisymmetric Poiseuille flow, or Hagen-Poiseuille flow) 

The circular pipe is perhaps our most celebrated viscous flow, first studies by 

Hagen (1839) and Poiseuille (1984), is the pressure-driven flow in infinitely long 

cylindrical tubes. The geometry of the flow is shown in Fig. (3). Assuming that gravity 

is zero, and with the assumptions;    z
r

p0, 0, const.
z

vv v θ θ
∂ ∂

= = = =
∂ ∂

 

 

 

 

 

 
 

Continuity eq.       
1 0 0v v v v vReduce to

r r r z z
θ

θ
∂ ∂ ∂ ∂

+ + + = ∴ =
∂ ∂ ∂ ∂

r r z z  

Take momentum eq. in z - dir. only 
2 2

z z z z z z
r z z 2 2 2

vv v v p 1 v 1 v vv v g r z dir
r r z z r r r r z

θρ ρ µ
θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + = − + + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
reduce to  

zp 1 v0 r
z r r r

µ∂ ∂ ∂  = − +   ∂ ∂ ∂  
      (1) 

Show that the general solution by using eq. (1)  

2
z 1 2

1 pv r c ln r c
4 zµ

∂
= + +

∂
 

Apply the B.C. (1)  at r = 0 , z 0
r

v∂
=

∂
 

Apply the B.C. (2) at r = R , vz = 0  

Show that parabolic velocity profile after apply the boundary conditions as;  

( )2 2
z

1 pv R r
4 zµ

∂
= − −

∂
 

Fig. (3) Axisymmetric Poiseuille flow 
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vz,max at  r = 0    2
z,max

1 pv R
4 xµ

∂
= −

∂
 

Show that z, ave

z, max

v 1
v 2

=  

Hint:  The volumetric flow rate is 
R

z

0

Q v 2 r drπ= ∫     and 2A Rπ=  

To find the shear stress distribution is given by  

r z
w rz w

v 1 p r
z r 2 z

vτ τ µ τ∂ ∂ ∂ = = + → ∴ = ∂ ∂ ∂ 
 

 

τw = 0 at the centerline ( r = 0) and  τw  maximum at the wall (r = R) 

 

H.W. Consider fully-developed pressure-driven flow of a Newtonian liquid in a 

sufficiently long annulus of radii R and κR, where κ <1 (Fig. 4). For zero gravity. 

Boundary conditions: 

z

z

0 at r R
0 at r R

v
v

κ= =
= =

  

 

show that 

( )

2 2
2

z
1 p r 1 rv R 1 ln

4 z R ln 1 / R
κ

µ κ
 ∂ − = − − +  ∂    

 

and the shear stress is 

( )
2

rz
1 p r 1 RR 2
4 z R ln 1 / r

κτ
κ

 ∂ −   = −    ∂     
 

Find the maximum velocity (Hint: occurs at the point where τrz = 0 or dvz/dr =0) 

 

r 

dr 

Fig. (4) Fully-developed flow in an annulus 
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3.3 Thin film flow (gravity-driven). 

Consider a thin film of an incompressible Newtonian liquid flowing down an 

inclined plane (Fig. 5). The ambient air is assumed to be stationary, and, therefore, the 

flow is driven by gravity alone. Assuming that the surface tension of the liquid is 

negligible, and that the film is of uniform thickness δ, calculate the velocity and the 

volumetric flow rate per unit width. For steady state. 

The continuity , and momentum can be reduce as; 

• Continuity eq.        
u 0
x

∂
=

∂
        (1) 

• Momentum eq.       
2

x 2
u0 g

y
ρ µ ∂

= +
∂

 

2

2
u gsin

y
µ ρ θ∂

= −
∂

    (2) 

 

 

 

B.C. no slip along the solid boundary (1) at y = 0 , u = 0, 

        no shearing at the free surface    (2)  xy
u 0 at y
y

τ µ δ∂
= = =

∂
 

The general solution of the Eq. (2) as; 
2

1 2
gsin yu c y c

2
ρ θ

µ
= − + +  

Show that velocity profile after apply the boundary conditions as;  

2gsin yu y
2

ρ θ δ
µ

 
= − 

 
 

 

The maximum velocity occurs at the free surface,  

Fig. (5) Film flow down an inclined plane. 
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2
max

gsinu
2

ρ θ δ
µ

=  

volumetric flow rate per unit width is; 

0

Q udy
W

δ

= =∫  

and the average velocity, uave, over a cross section of the film is given by; 

2
ave

Q gsinu
W 3

ρ θ δ
δ µ

= =  

Note that if the film is horizontal, then sinθ = 0 and u is zero, i.e., no flow occurs. 

If the film is vertical, then sinθ= 1, and  

2g yu y
2

ρ δ
µ

 
= − 

 
 

3.4 Transient One-Dimensional Flows 
In the above examples, we studied three classes of steady-state flows, where the 

dependent variable, i.e., the nonzero velocity component, was assumed to be a function 

of a single spatial independent variable. The governing equation for such a flow is a 

linear second-order ordinary differential equation which is integrated to arrive at a 

general solution. The general solution contains two integration constants which are 

determined by the boundary conditions at the endpoints of the one-dimensional domain 

over which the analytical solution is sought. 

In the present section, we consider one-dimensional, transient flows. Hence, the 

dependent variable is now a function of two independent variables, one of which is time, 

t. The governing equations for these flows are partial differential equations. In fact, we 

have already encountered some of these PDEs, while simplifying the corresponding 

components of the Navier-Stokes equation. For the sake of convenience, these are listed 

below. 
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(a) For transient one-dimensional rectilinear flow in Cartesian coordinates with v=w=0 
and u=u (y , t), 

2

x 2
u p ug
t x y

ρ ρ µ∂ ∂ ∂
= − +

∂ ∂ ∂
                                         (1) 

(b) For transient axisymmetric rectilinear flow with  vr=vθ=0 and vz=vz(r, t), 

z z
z

v p 1 vg r z dir.
t z r r r

ρ ρ µ∂ ∂ ∂ ∂  = − + −  ∂ ∂ ∂ ∂  
       (2) 

 (c) For transient axisymmetric torsional flow with vz=vr=0 and vθ=vθ(r, t), 

( )v 1 rv dir
t r r r
θ

θρ µ θ∂ ∂ ∂  = −  ∂ ∂ ∂  
                         (3) 

The above equations are all parabolic PDEs. For any particular flow, they are 

supplemented by appropriate boundary conditions at the two endpoints of the 

onedimensional flow domain, and by an initial condition for the entire flow domain. 

Note that the pressure gradients in Eqs. (1) and (2) may be functions of time. These two 

equations are inhomogeneous due to the presence of the pressure gradient and gravity 

terms. The inhomogeneous terms can be eliminated by decomposing the dependent 

variable into a properly chosen steady-state component (satisfying the corresponding 

steady-state problem and the boundary conditions) and a transient one which satisfies 

the homogeneous problem. A similar decomposition is often used for transforming 

inhomogeneous boundary conditions into homogeneous ones. 

Separation of variables and the similarity solution method are the standard methods 

for solving Eq. (3) and the homogeneous counterparts of Eqs. (1) and (2). 

In homogeneous problems admitting separable solutions, the dependent variable 

u(xi, t) is expressed in the form; 

( ) ( ) ( )u xi, t X xi .T t=  

Substitution of the above expression into the governing equation leads to the 

equivalent problem of solving two ordinary differential equations with X and T as the 

dependent variables. 
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In similarity methods, the two independent variables, xi and t, are combined into the 

similarity variable 

ξ = ξ(xi, t) 
If a similarity solution does exist, then the original partial differential equation for 

u(xi, t) is reduced to an ordinary differential equation for u(ξ). 

(i) Transient plane Couette flow 

Consider a Newtonian liquid of density ρ and viscosity µ bounded by two infinite 

parallel plates separated by a distance H, as shown in Figure below. The liquid and the 

two plates are initially at rest. At time t=0+, the lower plate is suddenly brought to a 

steady velocity V in its own plane, while the upper plate is held stationary. Assuming 

that gravity and pressure gradient are zero 

The governing equation (1) is homogeneous can be reduce to, 
2

2
u u
t y

υ∂ ∂
=

∂ ∂
         (4)     

where /υ µ ρ=  is the kinematic viscosity. Mathematically, Eq. (4) is called the 

heat or diffusion equation. The boundary and initial conditions are: 

u V at y 0, t 0
u 0 at y H, t 0
u 0 at t 0, 0 y H

= = >
= = ≥
= = ≤ ≤

 

 

 

 

 

 

 

 

 

( )u V 1 y / H= −  
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Note that, while the governing equation is homogeneous, the boundary conditions are 

inhomogeneous. Therefore, separation of variables cannot be applied directly. We first 

have to transform the problem so that the governing equation and the two boundary 

conditions are homogeneous. This can be achieved by decomposing u(y, t) into the 

steady plane Couette velocity profile, which is expected to prevail at large times, and a 

transient component: 

( ) ( )yu y, t V 1 u y, t
H

  ′= − − 
 

 

Substituting into Eqs. (4), we obtain the following equation; 
2

2
u u
t y

υ
′ ′∂ ∂

=
∂ ∂

                   (5) 

with the boundary conditions; 

u 0 at y 0, t 0
u 0 at y H, t 0

yu V 1 at t 0, 0 y H
H

′ = = >
′ = = ≥

 ′ = − = ≤ ≤ 
 

 

Therefore, separation of variables can now be used. The first step is to express u'(y , t) in 

the form; 

Assume  (y, ) (y). ( )u t Y T t′ =  

Substituting into Eq. (5) and separating the functions Y and T, we get; 
2

2

1 ' '' constant =T Y
T Y H

λ
υ

= = −

 The only way a function of t can be equal to a function of y is for both functions to be 

equal to the same constant. For convenience, we choose this constant to be −λ2/H2.  We 

thus obtain two ordinary differential equations: 
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2

2

1 ' '' constant =T Y
T Y H

λ
υ

= = −

 2

2
2 2

2 2
2 2

1 0 ( ) 0 ( )
t

HT T T D T T t Ce
T H H

υλυλ υλλ
υ

−′
′= − ⇒ + = → + = →∴ =

 

( )

2 2 22
2 22

1 2

0 ( ) 0

( ) 0 ( )

H H

i x i x
H H

H H

Y Y Y D X
Y H

D i D i Y Y y c e c e

λ λ

λ λ
λ λ

λ

−

′′
′′= − ⇒ + = → + =

− + = ⇒ ∴ = +

 

 (y) cos siny yY A B
H H
λ λ   ∴ = +   

   
 

In this case the solution 
2

2(y, ) . cos sin
t

Hy yu t Y T A B Ce
H H

υλλ λ −     ′ = = +            
 

2

2* *(y, ) cos sin
t

Hy yu t A B e
H H

υλλ λ −    ′∴ = +        
 

Apply the B.C. 

( )
2

22

2

* * *

*

(1) 0 cos(0) sin(0)

0 0

t tH

t

u A B e A e

e A

υλ
αλ

αλ

−
−

−

′ = = + =

≠ ⇒ ∴ =
 

2

2*(y, ) sin .
t

Hyu t B e
H

υλλ − ′∴ =  
 

 

Apply at ' 0u at y H= =  
2

22* *(2) 0 sin . 0 , 0
sin 0 , 1, 2,

t tH

n

u B e B e
n n n n

υλ
αλλ

λ λ π λ π λ π

−
−′ = = → ≠ ≠

∴ = → = ⇒ ∴ = → = = 
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2 2 2

2 2* *

1 1

(y, ) sin . sin .
n nt t

n H H
n n

n n

y n yu t B e B e
H H

υλ π υλ π∞ ∞− −

= =

   ′∴ = =   
   

∑ ∑  

Apply the I.C. 

* 0

1

*

1

(y,0) 1 sin .

(y) sin .

n
n

n
n

y n yu V B e
H H
nf B y
L

π

π

∞

=

∞

=

   ∴ = − =   
   

=

∑

∑
 

Apply Fourier series *

0

2 (y)sin
H

n
n yB f dy

H H
π

= ∫  

* 2
n

VB
nπ

=  

2 2

2

1

2 1(y, ) sin .
n t
H

n

V n yu t e
n H

π υπ
π

∞ −

=

 ′∴ =  
 

∑  

Finally, for the original dependent variable ux(y , t) we get 

( )
2 2

2
n t
H

n 1

y 2V 1 n yu y, t V 1 sin .e
H n H

π υπ
π

∞ −

=

   = − −   
   ∑  
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Stream Function 
For two dimensional and axisymmetric flows, the continuity can be used to show 

that the complete velocity field can be described in terms of a single, scalar field 

variable, which is called stream function, ψ(x, y, t). In this development, we will 

consider only the case of constant-density flow. 

 2-D Case 

When nothing happens along one of the three directions in rectangular coordinate 

system, we have 2-D flow: 

( ) ( )u x,y i v x,y j and w 0, / z 0= + = ∂ ∂ =V  

For such a flow, 

( )


y x

0

z z z

x y z

x z y z

e e

x, y e e e

e e e
x y

e e e e
x x

ψ ψ ψ

ψ ψ

ψ ψ

−

= ∇ × = ∇ × + ∇ ×  
 ∂ ∂

= + × ∂ ∂ 
∂ ∂

= × + ×
∂ ∂

V





 

In terms of its scalar components, the velocity is: 

u and v
y x
ψ ψ∂ ∂

= = −
∂ ∂

 

Next we substitute this form for V into continuity equation for steady state, 

incompressible flow; 

 ( )z.V . e 0ψ∇ = ∇ ∇ × =    

which automatically satisfies continuity, for any choice of ( )x,yψ . The scalar field 

( )x,yψ  is called the stream function. 

• Consider a line along which ψ is a constant: 
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dy vd 0 udy vdx
dx uψ

ψ  = = − ⇒ = 
 

 

This is the Equation for the streamline. Thus, streamlines are lines of constant ψ. 

• For irrotational flow, the problem would be to determine ( )x,yψ  such that 

( )0∇ × =V  is satisfied: 

( )ze 0ψ∇ × ∇ × =    

We can reduce this to a scalar equation. using identities for vector notation; 

( ) ( ) ( )2
z z ze . e eψ ψ ψ∇ × ∇ × = ∇ ∇ − ∇        

but  ( )z. e 0
z
ψψ ∂

∇ = =
∂

 

and  ( ) ( )2 2
z ze eψ ψ∇ = ∇  

thus ( )2
zeψ∇ × = − ∇V  

So for irrotational flow, the stream function must also satisfy Laplace's equation; 
20 0ψ∇ × = ∇ =V  

Unlike the scalar potential, the stream function can be used in all 2D flows, 

including those for which the flow is not irrotational. 

 Axisymmetric flow (Cylindrical) 

Another general class of flow for which a stream function exists is axisymmetric 

flow. In cylindrical coordinates (r, θ, z), this corresponds to: 

( ) ( )r r z zv r,z e v r,z e and v 0, / 0θ θ= + = ∂ ∂ =V  

Then . 0∇ =V  can be satisfied be seeking V of the form: 

                     ( )f r,z eθ= ∇ ×   V  

or                  
( )r,z

e
r θ

ψ 
= ∇ ×  

 
V  
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Using the second expression to show that: 

r z
1 1v and v
r z r r

ψ ψ∂ ∂
= − =

∂ ∂
 

where ψ(r,z) is called the Stokes stream function. 

H.W. find 2ψ∇  

 Axisymmetric flow (Spherical) 

In spherical coordinates (r, θ, φ), axisymmetric flow means;  

( ) ( )r rv r,z e v r, e and v 0, / 0θ θ φθ φ= + = ∂ ∂ =V  

where φ is the azimuthal angle. Then . 0∇ =V  can be satisfied be seeking V of the 

form: 

                     ( )' r, eφψ θ = ∇ ×  V  

or                  
( )r,z

e
r sin φ

ψ
θ

 
= ∇ ×  

 
V  

r2
1 1e e

r sin r sin r θ
ψ ψ

θ θ θ
∂ ∂

= −
∂ ∂

 

In terms of its scalar components, the velocity is: 

r 2
1 1v and v

r sin r sin rθ
ψ ψ

θ θ θ
∂ ∂

= = −
∂ ∂

 

H.W. find 2ψ∇  

Streamlines, Pathlines and Streaklines 

♦ Streamline - a contour in the fluid whose tangent is everywhere parallel to V at a 

given instant of time. 

♦ Path line - trajectory swept out by a fluid element. 

♦ Streak line - a contour on which lie all fluid elements which earlier past through a 

given point in space (e.g. dye trace) 

For steady flows, these three definitions describe the same contour but, more 

generally, they are different. 
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Incompressible Fluids 
By "incompressible fluid" we are usually referring to the assumption that the fluid's 

density is not significant function of time or of position. In other words, 

( ). 0
t
ρ ρ∂

+ ∇ =
∂

V  

can be replaced by . 0∇ =V  

For steady flow, / t 0ρ∂ ∂ =  already and the main further requirement is that 

density gradients be negligible 

( ) ( ) ( ). . . .ρ ρ ρ ρ∇ = ∇ + ∇ ≈ ∇V V V V  

Since flow causes the pressure to change, we might expect the fluid density to 

change, at least for gases. As we shall see shortly, gases as well as liquids can be treated 

as incompressible for some kinds of flow problems. Conversely, in other flow problems, 

neither gas nor liquid can be treated as incompressible. So what is the real criteria? 

For an ideal fluid (i.e. no viscous dissipation to cause T∇ ), density variations 

come about primarily because of pressure variations. For an isentropic expansion, the 

compressibility of the fluid turns out to be; 

2
S

1
P c
ρ∂  = ∂ 

 

where c = speed of sound in the fluid. 

Thus changes in density caused by changes in pressure can be estimated as: 

2
1 P
c

ρ∆ ≈ ∆          (1) 

According to Bernoulli's equation, pressure changes for steady flow are related to 

velocity changes; 
2

2P v 1const. or P v
2 2

ρ
ρ

+ = ∆ = − ∆      (2) 
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Subs. eq. (2) into eq. (1) leads to  
2

2
v

2 c
ρρ ∆

∆ ≈ −  

The largest change in density corresponding to the largest change in v2; 
2

max

max

1 v
2 c

ρ
ρ

 ∆  =   
  

 

If the fraction change in density is small enough, then it can be neglected: 

 Criteria 1:    maxv c<<  

for air at sea level : c = 342 m/s = 700 mph 

for distilled water at 25°C: c = 1500 m/s = 3400 mph 

For unsteady flows, a second criteria must be met: 

• Criteria 2 : 
c

τ >>


 

where τ = time over which significant changes in v occur. 

  = distance over which changes in v occur. 

/ c = time for sound to propagate a distance  . 

For steady flow τ = ∞  and Criteria 2 is always satisfied. And fluid can be 

considered incompressible if both criteria are met. 

Alternative Forms of the Navier-Stokes Equations 

(1) Dimensionless form of the Navier-Stokes Equations: 
To write the Navier-Stokes equations in dimensionless form, the parameters of the 

problem should be used in order to normalize the dependent and independent variables. 

These parameters include the physical properties of the fluid i.e. density, ρ, and 

viscosity, μ, geometric variables such as some characteristic length, L, and other 

parameters which may arise from the boundary conditions, which could be some 

characteristic velocity, U. 

 For unsteady, low viscosity flows it is customary to make the pressure dimensionless 

with ρU2. This results in: 
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continuity    ( ). 0
t
ρ ρ∂

+ ∇ =
∂

V  

NSE            ( )2. g p
t

ρ ρ µ∂ + ∇ = − ∇ + ∇ ∂ 
V V V V  

Using these characteristic variables, we define the dimensionless variables as 

follows: 

* * * *i
i 2

x V tU Px , V , t , P
L U L Uρ

= = = =  

This becomes 

continuity    ( )*
* . 0

t
ρ ρ∂

+ ∇ =
∂

V  

NSE            ( )
*

* * * 2 *
* 2

gL. p
t U LU

µ
ρ

∂
+ ∇ = − ∇ + ∇

∂
V V V V  

( )
*

* * * 2 *
*

1 1. p
t Fr Re

∂
+ ∇ = − ∇ + ∇

∂
V V V V  

We see that continuity is devoid of parameters, while Navier-Stokes contains two: 

Reynolds number:   
LU LURe ρ
µ υ

= =  

Froude number: 
2UFr

gρ
=  

The Reynolds number is the most important dimensionless group in fluid mechanics. 

Almost all viscous-flow phenomena depend upon the Reynolds number. The Froude 

number is important only if there is a free surface in the flow. 
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Euler equation 

 In the limit of Re → ∞  (the limiting case of very small viscosity) the stress term 

vanishes: 
*

* * *
* . p

t
∂

+ ∇ = −∇
∂
V V V  

  In dimensional form, with µ = 0, we get the Euler equations: 

. p
t

ρ ∂ + ∇ = −∇ ∂ 
V V V  

  The flow is then inviscid 

 

• For steady state, viscous flows it is customary to make the pressure dimensionless 

with µU/L. This results in: 
2. pρ µ∇ = −∇ + ∇V V V  

with dimensionless variables: * * *i
i

x V Px , V , P
L U U / Lµ

= = =  

This becomes 

NSE            ( )* * * 2 *Re . p∇ = −∇ + ∇V V V  

 In the limit of Re 0→  the convective term vanishes: 

* 2 *p 0−∇ + ∇ =V  
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(2) The Vorticity Transport Equation 
In the case of two-dimensional unsteady flow in the x-y plane the velocity vector 

becomes:       u(x,y, t)i v(x,y, t) j= +V  

and the system of equations of NSE and continuity transforms into; 

2 2

2 2
u u 1 1 p u uu v X
x y x x y

υ
ρ ρ

 ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                     (1) 

2 2

2 2
v v 1 1 p v vu v Y
x y y x y

υ
ρ ρ

 ∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                     (2) 

u v 0
x y

∂ ∂
+ =

∂ ∂
                                                                           (3) 

But the vector of vorticity, curl V, which reduces to the one component about the z-

axis for 2-D flow: 

z
1 1 v ucurl
2 2 x y

ω ω  ∂ ∂
= = = − ∂ ∂ 

V               (4) 

For frictionless motions are irrotational so that curl V = 0 

Differentiate eq. (1) w.r.t. (y) and eq. (2) w.r.t. (x) for eliminating pressure terms, 

we obtain: 



2 2

2 2

LocalAcc. ConvectiveAcc. dissipatationof vorticity
throughfriction

u v
t x y x y
ω ω ω ω ωυ

 ∂ ∂ ∂ ∂ ∂
+ + = + ∂ ∂ ∂ ∂ ∂ 




           (5)  (vorticity transport) 

or , in shorthand form: 



2D
Dt

substantive
variation of
vorticity

ω υ ω= ∇    or vector form:      2.
t
ω ω υ ω∂

+ ∇ = ∇
∂

V  

In some case this equation called vorticity-velocity equation. 
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Note: if 0 0µ ω= ⇒ ≠  

(3 unknowns (ω, u, v) in 1 equation, we need continuity eq. to 

close the system, get 2 eqs. with 3 unknowns.) 

• The boundary conditions on vorticity is also difficult to determine on solid walls. 

• This problems was solved by either devising formula for the values of ω on the 

walls or recently by not assigning any values to ω on the walls. 

 

(3) The Stream function Transport Equation (Biharmonic Formulation) 
Because the difficulty to determine the vorticity on the walls, Finally, it is possible 

to transform these two equations (eq. (3) and (5)) with three unknowns into one equation 

with one unknown by introducing the stream function ψ (x,y): 

u , v
y x
ψ ψ∂ ∂

= = −
∂ ∂

 

we see that the continuity equation is satisfied automatically. In addition the 

vorticity equation (eq. 4) becomes; 

21 v u 1
2 x y 2

ω ψ ∂ ∂
= − = − ∇ ∂ ∂ 

 

The vorticity transport eq. (5) becomes; 
2 2 2

4

t y x x y
ψ ψ ψ ψ ψ υ ψ∂∇ ∂ ∂∇ ∂ ∂∇

+ − = ∇
∂ ∂ ∂ ∂ ∂

        (6) 

In this form contains only one unknown, ψ. The left-hand side of eq. (6) contains the 

inertia terms, whereas, the right-hand side contains the frictional terms. It is a fourth-

order partial differential eq. in the stream function ψ. Its solution in general terms is 

again, very difficult, owing to its being non-linear. But, the boundary conditions in this 

case are easily specified especially on solid walls. 

To scaling the above eq. (6) by using the dimensionless variables as follows: 
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* *i
i

x tUx , t ,
L L UL

ψ
= = Ψ =  

This becomes 
2 2 2

4
* * * * *

1
t y x x y Re

∂∇ Ψ ∂Ψ ∂∇ Ψ ∂Ψ ∂∇ Ψ
+ − = ∇ Ψ

∂ ∂ ∂ ∂ ∂
 

 In the limit of Re 0→  (the limiting case of very large viscosity) 

In very slow motions or in motions with very large viscosity the viscous forces are 

considerably greater than the inertia forces because the latter are of the order of the 

velocity squared, whereas the former are linear with velocity. To a first approximation it 

is possible to neglect the inertia terms with respect to the viscous terms, so the eq. (6) we 

becomes;     4 0ψ∇ =         (7) 

This is, now a linear equation. Flows described by equ. (7) proceed with very small 

velocities and are sometimes called creeping motions. 

Creeping motions can also be regarded as solution of the Navier-Stokes equations 

in the limiting case of very small Reynolds numbers (Re   0), because the Reynolds 

number represents the ratio of inertia to friction forces. 

Re Ineria force
Friction force

=  
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Turbulence 
In all the problems we have analyzed the date, the fluid elements travel along 

smooth predictable trajectories. This state of affairs is called: 

Laminar flow: Fluid elements travel along smooth deterministic trajectories. 

These trajectories are straight parallel lines for simple pipe flows. 

Consider Reynolds experiment (1882) - inject a thin stream of dye into a fully 

developed flow in a pipe; 

 

 

 

 

 

 

 

 

• For laminar flow, dye stream appears as a straight colored thread. 

 

• For turbulent flow, irregular radial fluctuations of dye thread. 

He found in all cases, the transition occurred at a critical value of a dimensionless 

group: 


Re

UD 2300 200ρ
µ

= ±  

where U  is the cross-sectional average velocity (= volumetric flow rate /pipe area). 

Today, we know this dimensionless group as the Reynolds number. 

origin of turbulence - instability of laminar-flow solution of N-S eqs. 

instability - small perturbations (caused by vibration, etc) grow rather than decay with 

time. 

 68 



That the laminar-flow solution is metastable for Re > 2100 can be seen from 

Reynolds experiment performed with a pipe in which disturbance are minimized: 

     reduce vibration   ,  fluid enters pipe smoothly ,  smooth pipe wall 

 

Under such conditions, laminar flow can be seen to persist up to Re = 104. However, just 

adding some vibrations (disturbance) can reduce the critical Re to 2100. 

The onset of turbulence causes a number of profound changes in the nature of the 

flow: 

• dye thread breaks up: streamlines appear contorted and random. 

• sudden increase in ∆p/L 

• local v fluctuates wildly with time 

Turbulent flow structures 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 69 



Time averaging technique (Time smoothing): 
First, we need to define what we mean by a time-averaged quantity. Suppose we 

have some property like velocity or pressure which fluctuated with time: 

s s(t)=     where s any property 

we can average over some time interval; 
t

0

1s(t) s(t)dt
t

∆

=
∆ ∫               s(t) s(t) s (t)′∴ = +  

 

 

 

 

 

 

Now let's define another quantity called the fluctuation about the mean: 

s (t) s(t) s(t)′ = −              

t

0

1s (t) s '(t)dt 0
tavarge of fluctuation

∆

′ = =
∆ ∫  

u u u '= +  

u =  instantaneous velocity component in x-dir. 

v v v ' and w w w'= + = +  

( )( )

u v u v u ' v ' 0 and uu ' 0

uv u u ' v v ' u v uv '

+ = + = = =

= + + = +


0

vu '
=
+

0

2 2 2

u ' v '

uv u v u ' v '

u u u '

=
+

∴ = +

= +

 

u u u u,
x x t t

   ∂ ∂ ∂ ∂
= =   ∂ ∂ ∂ ∂   

 

s(t) 

t 

s'(t) 

s (t)  
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In general;  vector quantity: '= +V V V   and scalar quantity : 'φ φ φ= +  

( ) ( ) ( ) ( )div div , div div div div ' '

div grad div grad

φ φ φ φ

φ φ

= = = +

=

V V V V V V
 

Variance r.m.s and turbulence kinetic energy 

The descriptors used to indicate the spread of the fluctuations φ' about the mean value φ  
are the variance and root mean square (r.m.s): 

( ) ( ) ( ) ( )
1/2t t

2 2 2 2
rms

0 0

1 1' ' dt ' ' dt
t t

φ φ φ φ φ
∆ ∆ 

= ⇒ = =  
∆ ∆  
∫ ∫  

The total kinetic energy per unit mass k of the turbulence at a given location can be 
found as follows: 

( )2 2 21k u ' v ' w '
2

= + +  

The turbulence intensity It is the average r.m.s. velocity divided by a reference mean 

flow velocity Uref and is linked to the turbulence kinetic energy k as follows: 

( )
1/2

2 2 2

t t
ref ref

21 ku ' v ' w '
33I I

U U

 
+ +  

 = ⇒ =  

Reynolds-averaged Navier-Stokes equations for incompressible flow: 

(i) Mass Conservation Equation; 
we will start with the equation of continuity for an incompressible flow; 

u v w 0 (1) where u u u ', v v v ',and w w w'
x y z
∂ ∂ ∂

+ + = = + = + = +
∂ ∂ ∂

 

u u ' v v ' w w ' 0
x x y y z z
∂ ∂ ∂ ∂ ∂ ∂

+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

 

Integrating this eq. term by term over time, we have' 

u v w 0 (2) . 0 or div 0
x y z
∂ ∂ ∂

+ + = ⇒ ∇ = =
∂ ∂ ∂

V V  

 71 



(ii) momentum eq. in x- dir 

2u u u u 1 pu v w u
t x y z x

υ
ρ

∂ ∂ ∂ ∂ ∂
+ + + = − + ∇

∂ ∂ ∂ ∂ ∂
      (3) 

Multiply continuity eq. (1) by u and add to the momentum eq. (3), we have; 

u v wu 0
x y z

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ 

 

2u u u u w u 1 p2u u v u w u
t x y y z z x

υ
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + + + = − + ∇  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

( ) ( ) ( ) 2uu uv uwu 1 p u
t x y z x

υ
ρ

∂ ∂ ∂∂ ∂
+ + + = − + ∇

∂ ∂ ∂ ∂ ∂
 

In vector form: ( ) ( )( )u 1 pdiv u div grad u
t x

υ
ρ

∂ ∂
+ = − +

∂ ∂
V  

The time averaging each term overtime and applying the rule 

( ) ( ) ( ) ( )u u , div u div u div u div u' '
t t

1 p 1 p div grad u div grad u
x x

υ υ
ρ ρ

 ∂ ∂
= = = + ∂ ∂ 
∂ ∂

− = − =
∂ ∂

V V V V
 

Substitution of these results given the time-average x-momentum equation: 

( ) ( ) ( )( )u 1 pdiv u div u' ' div grad u
t x

υ
ρ

∂ ∂
+ + = − +

∂ ∂
V V  

Similarly in y and z dir; 

( ) ( ) ( )( )

( ) ( ) ( )( )

v 1 pdiv v div v' ' div grad v
t y
w 1 pdiv w div w' ' div grad w
t z

υ
ρ

υ
ρ

∂ ∂
+ + = − +

∂ ∂
∂ ∂

+ + = − +
∂ ∂

V V

V V
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In Cartesian form; 

( ) ( ) ( ) ( ) ( ) ( )22
2

u ' u ' v ' u 'w 'u u v u wu 1 p u
t x y z x y z x

υ
ρ

∂ ∂ ∂∂ ∂ ∂∂ ∂
+ + + + + + = − + ∇

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

( ) ( ) ( )2

2
u ' u ' v ' u 'w 'u u v u w u 1 p2u u v u w u

t x y y z z x y z x
υ

ρ

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + + = − + ∇

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
Rearrangement the above eq.  

( ) ( ) ( )

continuty 0

2

2

u u v w u u uu u u u v w
t x y z x y z

u ' u ' v ' u 'w ' 1 p u
x y z x

υ
ρ

=

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + = − + ∇

∂ ∂ ∂ ∂



 

2
2u u u u 1 p 1 ( u ' ) ( u ' v ') ( u 'w ')u v w u

t x y z x x y z
ρ ρ ρυ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ − ∂ − ∂ −
+ + + = − + ∇ + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 Similarly in y and z direction; 

2
2

2
2

v v v v 1 p 1 ( u'v') ( v ' ) ( v 'w ')u v w v
t x y z y x y z

w w w w 1 p 1 ( u 'w ') ( v 'w ') ( w ' )u v w w
t x y z x x y z

ρ ρ ρυ
ρ ρ

ρ ρ ρυ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ − ∂ − ∂ −
+ + + = − + ∇ + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ ∂ ∂ − ∂ − ∂ −

+ + + = − + ∇ + + + 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

In vector form; 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

u 1 p 1div u div grad u div u' ' x dir.
t x
v 1 p 1div v div grad v div v' ' y dir.
t y
w 1 p 1div w div grad w div w' ' z dir.
t z

Reynolds stresses

υ ρ
ρ ρ

υ ρ
ρ ρ

υ ρ
ρ ρ

∂ ∂
+ = − + + − −

∂ ∂
∂ ∂

+ = − + + − −
∂ ∂
∂ ∂

+ = − + + − −
∂ ∂

V V

V V

V V


 

The above equations is called Reynolds-averaged Navier-Stokes equations (RANS) 

The RANS in tensor form: 
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( )
2

i i
i j i j2

j i jj Term

u 1 p u 1u u ( u u )
t x x xx

υ ρ
ρ ρ

∂ ∂ ∂ ∂ ∂ ′ ′+ = − + + −
∂ ∂ ∂ ∂∂ 

 

The extra stress terms have been written out in longhand to clarify their structure. 

They result from six additional stresses: three normal stresses: 

2 2 2
xx yy zz' u ' , ' v ' , ' w 'σ ρ σ ρ σ ρ= − = − = −  

and shear stresses; 

xy yx xz zx yz zy' ' u 'v' , ' ' u 'w' , ' ' v 'w'τ τ ρ τ τ ρ τ τ ρ= = − = = − = = −  

The process of time averaging has introducing new terms 

2 2
1 1 2 1 3

2 2
i j 1 2 2 2 3

2 2
1 3 2 3 3

u u u u u u ' u v u w

u u u u u u u u v v ' v w'

u u u u u u w v w' w '

ρ ρ ρ

   ′ ′ ′ ′ ′ ′ ′ ′ ′
   
   ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− = − = −
   
′ ′ ′ ′ ′ ′ ′ ′   

   

 

In the RANS equations, there are six additional unknowns: 

2 2 2
1 2 3 1 2 1 3 2 3u , u , u , u u , u u , and u uρ ρ ρ ρ ρ ρ′ ′ ′ ′ ′ ′ ′ ′ ′− − − − − −  

Closure problem in turbulence: Necessity of turbulence modeling 

In the RANS equations, Reynolds stress terms give additional unknowns i ju uρ ′ ′− , 

but there are no explicit governing differential equations for the additional unknowns. 

♦ 3 velocity components, one pressure and 6 Reynolds stress terms = 10 unknowns 

♦ No. of equations = 4 ( 1 Continuity + 3 momentum) 

♦ As No. of unknowns > No. of equations, the problem in indeterminate. One needs 

to close the problem to obtain a solution. This is known as closure problem in 

turbulence. 

♦ The turbulence modeling tries to represent the Reynolds stresses in terms of time-

averaged velocity components. 

♦ The common turbulence models are classified on the basis of the number of 

additional transport equations that need to be solved along with RANS equations. 

Reynolds stress or 
turbulent stress 
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Different types of turbulent model 
The most common RANS turbulence models are classified on the basis of the 

number of additional transport equations that need to be solved along with the RANS 

flow equations. The commonly followed methodologies include 

• Eddy viscosity models, and 

• Reynolds stress transport models. 

No. of extra transport equations Name of the model 

Zero Mixing length model 

One Spalart-Allmaras model 

Two 

Standard k-e model 
RNG k-e model 
Realizable k-e model. 
k-ω model 

Seven Reynolds stress model 

Eddy Viscosity Models 
Of the tabulated models the mixing length and k–ε models are at present by far the 

most widely used and validated. They are based on the presumption that there exists an 

analogy between the action of viscous stresses and Reynolds stresses on the mean flow. 

Both stresses appear on the right hand side of the momentum equation, and in Newton’s 

law of viscosity the viscous stresses are taken to be proportional to the rate of 

deformation of fluid elements. For an incompressible fluid this gives: 

ji
ij ij

j i

uue
x x

τ µ µ
 ∂∂

= = +  ∂ ∂ 
 

Boussinesq proposed in 1877 that Reynolds stresses might be proportional to mean 

rates of deformation. Reynolds stress parts can be broken up into two parts: isotropic 

and anisotropic parts: 
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2 2 2
ji 1 2 3

i j t ij
j i

uu u u uu u
x x 3

Isotropic part
Anistropic part

ρ µ ρ δ
 ∂ ′ ′ ′∂ + +′ ′− = + −  ∂ ∂  

     (Bussinesq eddy-vescosity approx.) 

2 2 2
ji 1 2 3

i j t ij
j i

Mean ratesof deformation

uu 2 u u uu u
x x 3 2

Turbulent kinetic energy

ρρ µ δ
 ∂ ′ ′ ′∂ + +′ ′− = + −  ∂ ∂  

 

ji
i j t ij

j i

uu 2u u k
x x 3

ρρ µ δ
 ∂∂′ ′− = + −  ∂ ∂ 

 

 

 

 

RHS of RANS equations:   ij

jx
σ∂
∂

 

ji
ij ij i j

j i

uup u u
x x

σ δ ρ
 ∂∂ ′ ′ = − + + −    ∂ ∂ 

 

ji
t ij

j i

uu 2 k
x x 3

ρµ δ
 ∂∂

+ −  ∂ ∂ 
 

 
t

ji
ij eff . ij eff

j i2p k
3

uup
x x

µ µρ

σ δ µ
+

+

 ∂∂
∴ = − + +  ∂ ∂ 

 

The question remains "How to model µt" ? 
 

 

 

 

 

 

 

 

 

 

 

Eddy viscosity 
Kinetic energy of 

turbulent fluctuations 

Kronecker delta 

ij
1 if i j
0 if i j

δ
=

=  ≠
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Mixing length model 
Attempts to link the characteristic velocity scale of the eddies with the mean flow 

properties because there is a strong connect between the mean flow and the behavior of 

the largest eddies. 

2
m

t

2
t m

uu '
y

u ' v '

u uu ' v '
y y

uu 'v '
y

u
y

α

α

ρ ρ

ρ µ

µ ρ

∂
∂

∂ ∂
− =

∂ ∂

∂
− =

∂

∂
∴ =

∂







 

2t
t m

u
y

µυ
ρ

∂
∴ = =

∂
      This is Prandtl's mixing length model 

Algebraic expressions for mixing length in terms of the characteristic system length 

scale are reported for simple flows, such as fully developed pipe and channel flow, 

boundary layer, axisymmetric jet, wake … etc. 

Advantages: 
 Easy to implement. 

 Cheap in terms of computing resources. 

 good predictions for simple flows such as jets, mixing layers, wakes and boundary 

layer flow. 

Disadvantages: 
 Completely incapable of describing flows where the turbulent length scale varies: 

anything with separation or circulation. 

 only calculates mean flow properties and turbulent shear stress. 

 

ū(y) 

y 

y+lm 

y 

y-lm 

v' > 0 

v' < 0 
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Turbulent kinetic energy and dissipation 
The instantaneous kinetic energy k(t) of a turbulent flow is the sum of mean kinetic 

energy k and turbulent kinetic energy k: 

( )2 2 2
1 2 3

1k u u u
2

= + +  

( )2 2 2
i i 1 3 3

1 1k u u u u u
2 2

k(t) k k

′ ′ ′ ′ ′= = + +

= +
 

The dissipation rate of k is given as: 

i i

j j

u u
x x

ε υ
′ ′∂ ∂

=
∂ ∂

 

We need equations for k and ε. 

Turbulent kinetic energy k 
Step (1) Start with the RANS derivation 

From Navier-Stokes equation  

( )i i
i j

j i j j

u 1 p uu u
t x x x x

υ
ρ

 ∂ ∂ ∂ ∂ ∂
+ = − +   ∂ ∂ ∂ ∂ ∂ 

         (1) 

Substituting i i i j j ju u u ,u u u , and p p p′ ′ ′= + = + = +  

( ) ( )( ) ( ) ( )i i i i j i i
j i j j

1u u u u u u p p u u
t x x x x

υ
ρ

 ∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′+ + + + = − + + +    ∂ ∂ ∂ ∂ ∂ 
 

Taking the average of the entire equation: 
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i iu u
t t

′∂ ∂
+

∂ ∂ i j i j i j
j

u u u u u u
x
∂ ′ ′ ′+ + +
∂ i ju u′+

i i

1 p 1 p
x xρ ρ

  =
 

′∂ ∂
− −

∂ ∂
i i

j j j j

u u
x x x x

υ υ
  ′∂ ∂ ∂ ∂

+ +  ∂ ∂ ∂ ∂ 

 
 
 
 

i i
i j i j

j i j j

u 1 p uu u u u
t x x x x

υ
ρ

 ∂ ∂ ∂ ∂ ∂ ′ ′+ + = − +     ∂ ∂ ∂ ∂ ∂ 
 

( ) ( )i i
i j i j

j i j j j

u 1 p uu u u u
t x x x x x

υ
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ′ ′+ = − + −  ∂ ∂ ∂ ∂ ∂ ∂ 
         (2) 

Step (2) Express the NS equation in terms of fluctuating components and hence 

obtain governing equation for turbulent kinetic energy: 

Subtracting Eq. (2) from eq. (2), we have; 

i i
i j j i i j i j

j i j j

u 1 p uu u u u u u u u
t x x x x

υ
ρ

 ′ ′ ′∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′ ′+ + + − =− +     ∂ ∂ ∂ ∂ ∂ 
      (3) 

Multiplying Eq. (3) by iu′  

i i
i i i j j i i j i j i i

j i j j

u 1 p uu u u u u u u u u u u u
t x x x x

υ
ρ

 ′ ′ ′∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + − =− +     ∂ ∂ ∂ ∂ ∂ 
 


( ) ( ) ( )

( )

i
i i i j i j i i i j

j j j
part1

2 3 4

i
i i j i i

j i j j

65 7

uu u u u u u u u u u
t x x x

1 p uu u u u u
x x x x

υ
ρ

′∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′+ + + +
∂ ∂ ∂ ∂

 ′ ′∂ ∂ ∂ ∂′ ′ ′ ′ ′− = − +   ∂ ∂ ∂ ∂ 

  

 

 

Part (1): ( ) ( )2 2i
i i i i i

u 1 1 1u u u u u
t 2 t 2 t t 2
′∂ ∂ ∂ ∂  ′ ′ ′ ′ ′= = =  ∂ ∂ ∂ ∂  

 

Part (2): ( ) j ji
i i j i i j i i

j j j j

u uuu u u u u u u u
x x x x

 ′ ′∂ ∂∂ ∂′ ′ ′ ′ ′= + = ∂ ∂ ∂ ∂  

0

i i
i j i j

j j

u uu u u u
x x
∂ ∂′ ′ ′ ′+ =
∂ ∂
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Part (3): ( ) ji
i j i i j i

j j j

uuu u u u u u
x x x

∂′∂ ∂′ ′ ′ ′= +
∂ ∂ ∂

0
2i

i j j i
j j

u 1u u u u
x x 2

  ′∂ ∂  ′ ′  = =  ∂ ∂    
 

Part (4): ( ) j ji
i i j i i j i i

j j j j

u uuu u u u u u u u
x x x x

 ′ ′∂ ∂′∂ ∂′ ′ ′ ′ ′ ′ ′ ′= + = ∂ ∂ ∂ ∂  

0
2i

i j j i
j j

u 1u u u u
x x 2
′∂ ∂  ′ ′ ′ ′+ =  ∂ ∂  

 

j2 2
j i i

j j

u1 1u u u
x 2 2 x

′∂∂  ′ ′ ′= − ∂ ∂ 

0
2

j i
j

1u u
x 2
∂  ′ ′=  ∂  

 

Part (5): ( )i i j
j

u u u
x
∂′ ′ ′−
∂

 

part (6): i
i i

i i i

1 p 1 1 uu u p p
x x xρ ρ ρ
′ ′ ∂ ∂ ∂′ ′ ′ ′= − ∂ ∂ ∂ 

0

i
i

1 u p
x ρ
 ∂ ′ ′=  ∂  

 

part (7): i i i i
i i

j j j j j j

u u u uu u
x x x x x x

υ υ υ
   ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′ ′= −      ∂ ∂ ∂ ∂ ∂ ∂   

 

 

Substituting Part 1 to Part 7 and taking the average of the entire equation: 

( )2 2 2i
i i j j i j i i i j

j j j j

i i i
i i

i j j j j

1 u 1 1u u u u u u u u u u
t 2 x x 2 x 2 x

1 u u uu p u
x x x x x

υ υ
ρ

∂ ∂ ∂ ∂ ∂     ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + − =     ∂ ∂ ∂ ∂ ∂     

 ′ ′ ′ ∂ ∂ ∂ ∂ ∂′ ′ ′− + −    ∂ ∂ ∂ ∂ ∂   

 

22 i
i i j i j i i ij

j j j

1 u 1 1u u u u u u u u u
t 2 x x 2 x 2
∂ ∂ ∂ ∂     ′ ′ ′ ′ ′ ′ ′ ′⇒ + + + +     ∂ ∂ ∂ ∂     

( )0

i j
j

i i i
i i

i j j j j

u u
x

1 u u uu p u
x x x x x

υ υ
ρ

∂ ′ ′− =
∂

 ′ ′ ′ ∂ ∂ ∂ ∂ ∂′ ′ ′− + −    ∂ ∂ ∂ ∂ ∂   

 

22 i i i i
i j i j i i j i i j

j j j j j j

1 1 1 1 u u u uu u u u u u u p u u u
t 2 x 2 x 2 x x x x

υ υ
ρ

 ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂   ′ ′ ′ ′ ′ ′ ′ ′ ′ ′∴ + = − + − − −      ∂ ∂ ∂ ∂ ∂ ∂ ∂     
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i i i i
j j i i j i i j

j j j j j j

P

k k 1 1 u u u uu u u u u p u u u
t x x 2 x x x x

ε

υ υ
ρ

 ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′∴ + = − + − − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

The equation for the turbulent kinetic energy k is as follows; 



i i i i
j j i i j i i j

j j j j j j

k k 1 1 u u u uu u u u u p u u u
t x x 2 x x x x

υ υ
ρ

 
 ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′+ = − + − − − 

∂ ∂ ∂ ∂ ∂ ∂ ∂  
 
    

 

 

 

 

 

 

 

 

The first and second terms on the right-hand side represents turbulent diffusion of 

kinetic energy (which is actually transport of velocity fluctuations by the fluctuations 

themselves); it is almost modeled by use of a gradient-diffusion assumption: 

t
j i i j

k j

1 1 ku u u u p
2 x

υ
ρ σ

  ∂′ ′ ′ ′ ′− + ≈  ∂ 
 

where νt is the kinematic eddy viscosity and σk is a turbulent Prandtl number 

The Forth term of the right-hand side represents the rate of production of turbulent 

kinetic energy by the mean flow. If we use the eddy-viscosity hypothesis to estimate the 

Reynolds stress, it can be written: 

ji i i
i tj

j j i j

uu u uP u u
x x x x

υ
 ∂∂ ∂ ∂′ ′= − ≈ +  ∂ ∂ ∂ ∂ 

 

 

rate of 
change of k 

transport of k 
by advection 

transport of k by 
Reynolds stresses 

transport of k 
by pressure 

transport of k by 
viscous stresses 

turbulence 
production 

rate of 
dissipation of k 

 81 



The k-ε model 
The model equation for the turbulent kinetic energy k is as follows: 


 

t
j

j j k j

Dk k k ku P
Dt t x x x

υ ε
σ
 ∂ ∂ ∂ ∂

= + = + −  ∂ ∂ ∂ ∂  

 

 

 

 
 

The model equation for the turbulent dissipation ε is as follows: 

  

2
t

j 1 2
j j j

D Pu C C
Dt t x x x k kε ε

ε

ε ε ε υ ε ε ε
σ
 ∂ ∂ ∂ ∂

= + = + −  ∂ ∂ ∂ ∂  

 

 

 

 

The standard values of all model constant as fitted with benchmark experiments are 

(Lauder and Sharma, Letter in heat and mass transfer, 1 (1974), 131-138): 

k 1 2C 0.09, 1.00, 1.30, C 1.44, C 1.92µ ε ε εσ σ= = = = =  

The Reynolds stresses are then calculated as follows: 

ji
i j t ij

j i

uu 2u u k
x x 3

ρρ µ δ
 ∂∂′ ′− = + −  ∂ ∂ 

 

The velocity scale ϑ  and length scale   representative of the large-scale 

turbulence are define in terms of k and ε as follows: 
3/2

1/2
t

kkϑα α υ αϑ
ε

   

The eddy viscosity is calculated from: 

rate of 
increase k 

Convective 
transport 

Diffusive 
transport 

rate of 
production 

rate of 
destruction 

rate of 
increase ε 

Convective 
transport 

Diffusive 
transport 

rate of 
production 

rate of 
destruction 
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2

t
kCµµ ρ
ε

∴ =  

Advantages and disadvantages of k-e model 

Advantages Disadvantages 

• Relatively simple to implement. 

• leads to stable calculations. 

• widely validated turbulence model. 

 

♦ Poor predications for: 

o swirling and rotating flows. 

o flows with strong separation. 

o certain unconfined flows. 

o fully developed flows in non-cicular ducts. 

♦ valid only for fully developed turbulent flows. 

♦ more expensive than mixing length model. 

More two-equation models 
Many attempts have been made to develop two equation models that improve on 

the standard k-e model. We will discuss some here: 

 (ReNormalization Group) RNG k-ε model 

 k - ω model. 

RNG k - ε model 

Similar in form to the standard k-ε but includes: 

additional term in e equation for interaction between turbulence dissipation and 

mean shear. 

2
ji i

j t k
j j i j j j

uk k u u k ku C
t x x x x x xµυ α ν ε

ε
   ∂  ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + −       ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

2 2
ji i

j 1 t 1
j j i j j j

uu u ku C C C R
t x k x x x x x kε ε µ ε
ε ε ε ε ευ α ν

ε
   ∂  ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + − −       ∂ ∂ ∂ ∂ ∂ ∂ ∂    
 

The standard values of all the model constants are; 

k 1 2C 0.0845, 1.39, C 1.42, C 1.68µ ε ε εα α= = = = =  
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Improved predications for: 

 High streamline curvature and strain rate. 

 Transitional flows. 
 

Wilcox k-ω model 
This model which uses the turbulence frequency / kω ε= as the second variables. 

If we use this variable the length scale is k /ω= . The eddy viscosity is given by: 

t
kρµ
ω

=  

The Reynolds stresses are computed as usual in two-equation models with the 

Boussinesq expression: 

ji
i j t ij

j i

uu 2u u k
x x 3

ρρ µ δ
 ∂∂′ ′− = + −  ∂ ∂ 

 

The transport equation for k and ω at high Reynolds are as follows: 

j *t i i
j t

j j k j j i j

uk k k u uu k
t x x x x x x

υν υ β ω
σ

   ∂∂ ∂ ∂ ∂ ∂ ∂
+ = + + + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

jt i i
j 1 t 1

j j j j i j

uu uu k
t x x x x x xω

ω ω υ ων γ υ β ω
σ

   ∂∂ ∂ ∂ ∂ ∂ ∂
+ = + + + −      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

The standard values of all the model constants are; 
*

k 1 12.0, 2.0, 0.075, 0.09, 0.553ωσ σ β β γ= = = = =  

Reynolds Stress Equation Model (RSM) 
The most complex classical turbulence model, also called the second-order or 

second-moment closure model. Several major drawbacks of the k–ε model emerge when 

it is attempted to predict flows with complex strain fields or significant body forces. 

Under such conditions the individual Reynolds stresses are poorly represented by 

Boussinesq expression formula even if the turbulent kinetic energy is computed to 
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reasonable accuracy. The exact Reynolds stress transport equation on the other hand can 

account for the directional effects of the Reynolds stress field. 

The modeling strategy originates from work reported in Launder et al. (1975). We 

follow established practice in the literature and call ij ij i jR / u uτ ρ ′ ′= − =  the Reynolds 

stress, although the term kinematic Reynolds stress would be more precise.  

The exact equation for the transport of the Reynolds stress ij i jR u u′ ′= : 

 

 




    
ij ij

ij ij ij ij ij ij

DR R
C P D

Dt t
ε

∂
= + = + − + Π +Ω

∂
 

 

 

 

The above describes six partial differential equations: one for the transport of each of 

the six independent Reynolds stresses ( 2 2 2
1 2 3 1 2 1 3 2 3u ,u ,u ,u u ,u u , and u u′ ′ ′ ′ ′ ′ ′ ′ ′ ).  

Large eddy Simulation (LES) 
o Tracks the behaviour of the larger eddies 

o LES involves space filtering of the unsteady Navier-Stokes equations prior to the 

computations, which passes the larger eddies and rejects the smaller eddies. 

o The interaction effects between the larger, resolved eddies and the smaller 

unresolved ones, gives rise the sub-grid-scale (SGS) stresses which is described 

by means of an SGS model. 

o The unsteady space filtered equations are solved on a grid of CVs along with the 

SGS model of the unresolved stresses. 

Advantages: Can address CFD problems with complex geometry 

rate of change 
of Rij 

Transport of Rij 
by Convective 

Transport of 
Rij by 

Diffusive 

Rate of 
production 

of Rij 

Transport of 
Rij due to 
rotation 

Rate of 
dissipation 

of Rij 

Transport of Rij due 
to turbulent pressure 
- strain interactions 
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Disadvantages: Requires substantial computing resources in terms of storage and 

volume. 

Direct numerical simulation DNS 
The instantaneous continuity and Navier–Stokes equations for an incompressible 

turbulent flow form a closed set of four equations with four unknowns u, v, w and p. 

Direct numerical simulation (DNS) of turbulent flow takes this set of equations as a 

starting point and develops a transient solution on a sufficiently fine spatial mesh with 

sufficiently small time steps to resolve even the smallest turbulent eddies and the fastest 

fluctuations. 

Reynolds (in Lumley, 1989) and Moin and Mahesh (1998) listed the potential 

benefits of DNSs: 

• Precise details of turbulence parameters, their transport and budgets at any point in 

the flow can be calculated with DNS. These are useful for the development and 

validation of new turbulence models. 

• Instantaneous results can be generated that are not measurable with instrumentation, 

and instantaneous turbulence structures can be visualized and probed. For example, 

pressure–strain correlation terms in RSM turbulence models cannot be measured, but 

accurate values can be computed from DNSs. 

• Advanced experimental techniques can be tested and evaluated in DNS flow fields. 

Reynolds (in Lumley, 1989) noted that DNS has been used to calibrate hot-wire 

anemometry probes in near-wall turbulence. 

• Fundamental turbulence research on virtual flow fields that cannot occur in reality, 

e.g. by including or excluding individual aspects of flow physics.  

Disadvantages: 

• On the downside we note that direct solution of the flow equations is very difficult 

because of the wide range of length and time scales caused by the appearance of 

eddies in a turbulent flow. 

• Highly costly in terms of computing resources. 
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Concluding Remarks 
 Wide range of length and time scales of motion makes the prediction of the effects 

of turbulence so difficult. 

 RANS turbulence models work well in expressing the main features of many 

turbulent flows by means of one length scale and one time scale. 

 The standard k-ε model is widely used in industrial internal flow computation, 

whereas k-ω model has become established as the leading models for aerospace 

applications. 

 Performance of the improved RANS turbulence models is not uniform. One 

model does not perform well for all problems. 

 Although LES and DNS require substantial computing resources, but these are 

likely to play increasingly important role in turbulence research. 

or in the other words: 

♦ Direct Numerical Simulation (DNS) 
– Theoretically, all turbulent (and laminar / transition) flows can be simulated by 
numerically solving the full Navier-Stokes equations 
– Resolves the whole spectrum of scales. No modeling is required 
– But the cost is too prohibitive! Not practical for industrial flows 

♦ Large Eddy Simulation (LES) type models 
– Solves the spatially averaged N-S equations 
– Large eddies are directly resolved, but eddies smaller than the mesh are modeled 
– Less expensive than DNS, but the amount of computational resources and efforts 

are still too large for most practical applications 
♦  Reynolds-Averaged Navier-Stokes (RANS) models 

– Solve time-averaged Navier-Stokes equations 
– All turbulent length scales are modeled in RANS 

• Various different models are available 
– This is the most widely used approach for calculating industrial flows 

N.B. There is not yet a single, practical turbulence model that can reliably predict 
all turbulent flows with sufficient accuracy 
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Analysis of Turbulent flow in Pipes 
We can make the same assumptions (i.e. the same guess) about the functional form 

of the time-averaged velocity and pressure profile in turbulent flow that we made for 

laminar flow: we will assume that the time-averaged velocity profile is axisymmetric 

(v 0, / 0)θ θ= ∂ ∂ =  and fully developed ( / z 0)∂ ∂ = . 

z z rv v (r) , v v 0 , p p(z)θ= = = =  

Then the z-component for NSE. 

( )
00 0

T T
T zz z z zz

r z rz
vv v v p 1 1v v r z dir

r r z z r r r z
θ θτ τρ τ

θ θ
∂∂ ∂ ∂ ∂ ∂ ∂ + + = − + − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 



 

reduce to: 

( )T
rz

p 10 r
z r r

τ∂ ∂
= − +

∂ ∂
 

where 
r zv v

T t
rz rz rz

ρ

τ τ τ
′ ′−

= +  

We have a function of r only equal to a function of z only. The only way these two 

terms can be sum to zero for all r and z is if both equal a spatial constant: 

( )T
rz

dp 1 d pr 0
dz r dr L

τ ∆
= = − <  

This implies that pressure varies linearly with z. 

Solving for the total stress ( )T
rzτ  by integrating; 

T t
rz rz rz

1 p cr
2 L r

τ τ τ∆
= − + = +           (1) 

The integration constant c was chosen to be zero to avoid having the stress 

unbounded at r = 0. Now this is the total stress: the sum of the Reynolds stress. 
t

rz r zv vτ ρ ′ ′= −  

and a viscous contribution from time-smoothing 

Newton's law of viscosity: 
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z
rz

dv
dr

τ µ=  

The latter can be determined by differentiating the time-averaged velocity profile. 

If we subtract this from the total we can determine t
rzτ  - one of the component of the 

Reynolds stress tensor. The result is; 

 

Notice that the Reynolds stress tends to vanish 

near the wall. This can be explained by noting 

that at the wall, "no slip" between the fluid can 

stationary wall requires that the instanteous 

velocity, as well as its time-average, must be 

zero: 

 t
z z z rz r zv v 0 v 0 v v 0τ ρ′ ′ ′= = → = ⇒ = − =  

 

 

In terms of the relative importance of these two contributions to the total, one can 

define three regions; 

♦ turbulent core: t
rzτ τ>>  This covers most of the cross section of the pipe. 

♦ laminar sublayer; t
rzτ τ<< . Very near the wall, the fluctuations must vanish (along 

with the Reynolds stress) but the viscous stress are largest. 

♦ transition zone: t
rzτ τ≈ . Neither completely dominates the other. 

When applied to the situation of fully developed pipe flows, continuity is 

automatically satisfied and the time-smoothed Navier-Stokes equations yields only one 

equation in 2 unknowns: 

z r zv (r) and v vρ ′ ′  

Clearly another relationship is needed to complete the model. This missing 

relationship is the constitutive equation relating the Reynolds stress to the time-
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smoothed velocity profile. One might be tempted to defined a quantity like the viscosity 

to relate stress to the time-averaged velocity. 
?

t z
rz t

dv
dr

τ µ=  

But if you define the "turbulent viscosity" this way, its value turns out to depend 

strongly on position. 

t 100 near pipe centerline
0 at pipe wall

µ
µ

≈
= 


 

So unlike the usual viscosity, ( )tµ  is not a material property (since it depends on 

position rather than just the material). 

 

Prandtl's Mixing Length Theory 
The first successful constitutive equation for turbulence was posed by Prandtl in 

1952. Prandtl imagined that the fluctuations in instantaneous fluid velocity at some fixed 

point were caused by eddies of fluid which migrate across the flow from regions having 

higher or lower time-averaged velocity. 

♦ eddy- a packet of fluid (much larger than a fluid element) which can undergo 

random migration across streamlines of the time-smoothed velocity field. 

These eddies have a longitudinal velocity which corresponds to the time-average 

velocity at their previous location. 

 

♦ Mixing time: During this time, the eddy migrates 

laterally a distance    called the mixing length. 

♦ Mixing length ( ): characteristic distance an eddy 

migrates normal to the main flow before mixing.  

 

 

 

ū(y) 

y 

y+  

y 

y-  

u' > 0 

u' < 0 
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To estimate the magnitude of the fluctuation, we can expand the time-smoothed 

velocity profile in Taylor series about y. 

( ) ( )
2

2
2

y y

du 1 d uu y u y
dy 2 dy

+ = + + +    

Assuming that   is sufficiently small that we can truncate this series without 

introducing significant error. 

( ) ( ) ( )above

duu u y u y
dy

′ = + − ≈   

where the subscript "above" is appended to remind us that is the fluctuation 

resulting from an eddy migrating from above. At some later time, another eddy might 

migrate to our location from below, producing a negative fluctuation in velocity; 

( ) ( ) ( )below

duu u y u y
dy

′ = − − ≈ −   

Of course the average fluctuation is zero: ( )u 0′ = , but the average of the squares is 

not; 

( ) ( ) ( ){ }
2

2 2 2 2
above below

1 duu u u
2 dy

 ′ ′ ′≈ + ≈  
 

          (2) 

Now let's turn our attention to v'. this is related to how fast the eddies migrate, and 

the sign depends on whether they are migrating upward and downward. 

 
If the eddy migrates from above, it represents a 

negative y-fluctuation (it is moving in the  

y-direction). Such an eddy will have a greater  

x-velocity than the fluid receiving it, consequently 

generating a positive x-fluctuation: 

 

v ' 0 u ' 0 u ' v ' 0< → > ⇒ <  

 

ū(y) 

y 

x 

v' < 0 
u' > 0 

v' > 0 
u' < 0 
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On the other hand, if the eddy migrates from below, it represents a positive y-fluctuation but has 

x-velocity than the fluid receiving it, generating a negative x-fluctuation: 
v ' 0 u ' 0 u ' v ' 0> → < ⇒ <  

Finally, if there is no vertical migration of eddies, there is no reason for the x-

velocity to fluctuate: 

v ' 0 u ' 0= → =  

These three statements suggest that the y-fluctuations are proportional to the x-

fluctuations, with a negative proportionality constant; 

v ' u 'α≈ −  
where α > 0. Alternatively, we can write; 

( )2v ' 0 u ' 0 u ' v ' u 'α> → < ⇒ = −  
Time averaging and then subs. eq. (2); 

( )
2

2 2 duu v ' u
dy

α α  ′ ′= − = −  
 

  

Absorbing the unknown α into the (still unknown) mixing length parameter: 
2

t 2
xy

duu 'v'
dy

τ ρ ρ  
= − =  

 
           (3) 

which serves as a constitutive equation for turbulent flow. Comparing this with 

Newton's law of viscosity; 

xy
du
dy

τ µ=  

we could conclude that an apparent turbulent viscosity is given by: 

2
t

du
dy

µ ρ=   

Of course, this viscosity is not a true fluid property, because it depends strongly on 

the velocity profile. 

For this theory to be useful, we need a value for the "mixing length"  . There are 

two properties of   which we can easily deduce.  
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 First of all,   was defined as the distance normal to the wall which the eddy travels 

before becoming mixed with local fluid. Clearly, this mixing must occur before the 

eddy "bumps" into the wall, so; 

property # 1              y<  

where y is the distance from the wall. 

 Secondly, we know from no-slip that the fluctuation all vanish at the well. 

Consequently, the Reynolds stress must vanish at the wall. Since the velocity gradient 

does not vanish, we must require that the mixing length vanish at the wall: 

property # 2              0 at y 0= =  

If it's not a constant, the next simplest functional relationship between   and y 

which satisfies both these properties is: 

ay=                   (4) 

where a is some constant and 0 < a < 1. 

Prandtl's "Universal" Velocity Profile. 
The velocity profile in turbulent flow is essentially flat, except near the wall where 

the velocity gradient are steep. Focusing attention on this region near the flow, Prandtl 

tried to deduce the form for the velocity profile in turbulent flow. Recall eq. (1) that in 

pipe flow, the total stress varies linearly from 0 at the center line to a maximum value at 

the wall: 

T
rz o

1 p rr 0
2 L R

τ τ∆
= − = <      (5)   

where we have defined 

( )( )o 1 / 2 R / L p 0τ ≡ − ∆ >  

 

which represents the stress on the wall. In the "turbulent core", the Reynolds stress 

dominates the "laminar" stress; then substituting eq. (3) through eq. (5): 

r 

τo 

R 
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2 2

t T
xy rz

2
2

o
a y

du y1 (6)
dy R

τ τ

ρ τ

≈

   ≈ −     


 

Dividing through by ρ and subs. eq. (4) 


2

2
2 2 o

v*

du ya y 1 (7)
dy R

τ
ρ

   ≈ −     
 

the ratio to/r has units of velocity-squared, which serves as a convenient choice for 
a characteristic turbulent velocity: 

ov* τ
ρ

≡  

is called the friction velocity or shear velocity. The dimensionless turbulent 

velocity will be denoted as; 

uu
v *

+ =  

Taking the square-root of eq. (7); 

du ya y v * 1
dy R

 = − 
 

 

The general solution to this 1st order ODE is; 

( ) 12 y 2 yu y C a 1 tanh 1
a R a R

+ +
+ + −

+ += + − − −           (8) 

where C is the integration constant, and where we have introduced dimensionless 
variables: 

u v * v *u , y y ,and R R
v * υ υ

+ + += = =  

Near the wall (i.e. for y << R or y+<< R+), we can simplify eq. (8): 

( )2y y1 1 O y
R 2R

+ +
+

+ +− = − +           (9) 

( )1 y 1 4Rtanh 1 ln O y
R 2 y

+ +
− +

+ +− = +  
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Dropping the higher-order terms: 

( ) ( )

c

2 ln 4R 1u y C ln y
a a

+
+ + +

−
= + +


      (10) 

where c is collection of constants. 

 

This result can be derived more easily by starting over with a simplified eq. (7) 

which applies when y << R. 

duay v *
dy

=  

or                                       

du

du 1 dy 1 dy
v * a y a y

+

+

+= =            (11) 

which integrates to:            1u ln y c
a

+ += +         (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

ln y+  

u+ 

u+ = 2.5lny+ + 5.5 

u+ = y+ 

Time-average turbulent velocity profile near wall 
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From the above figure on semi-log coordinate, as suggested by eq. (12), 

experimental velocity profiles do indeed show a linear region which extends over a 

couple of decades of y+ values. Moreover, the slope and intercept of this straight line 

don't seem to depend on the Reynolds number. Indeed, the slope and intercept also don't 

seem to depends on the shape of the conduit. Rectangular conduits yields the same 

velocity profile on these coordinates. This is called Prandtl's Universal Velocity Profile: 

y+ > 26  :          u 2.5ln y 5.5+ += +         (13) 

which applies for y+ > 26 (the turbulent core). This coefficient of lny+ corresponds 

to a = 0.4. so eq. (4) becomes; 

0.4 y=  

Of course eq. (13) also does not apply near the center of the pipe, since y R+ +≈  

there, whereas eq. (13) was derived by assuming that y R+ +<< .  

Laminar Sublayer 
In the laminar sublayer, Reynolds stress can be totally neglected, leaving just 

viscous stress. This close to the wall, the total stress is practically a constant equal to the 

wall shear stress τo. 

y << R :                        

T
xy rz

o
du
dy

τ τ

µ τ

≈

=
 

Then we can integrate the above ODE for u , and B.C.  u  at y = 0.  

ou yτ
µ

=           (14) 

We can make the result dimensionless; 

 

2
o

u y

/u 1 1 v * v *y y y
v * v * / v *

τ ρ
µ ρ υ υ

+ +

= = =  

or  u y+ +=        (15) 

which applied for 0 < y+ < 5 (the laminar sublayer). 
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Prandtl's Universal Law of Friction 
Let's try to figure deduce the analog of Poisueille's Formula for turbulent flow. 

Poisueille's Formula is the relationship between volumetric flowrate through the pipe 

and pressure drop. Volumetric flowrate Q is calculated by integrating the axial 

component of fluid velocity of the cross section of the pipe. 

( )
R

z z2 2ave.
0

Q 2v r v (r)dr
R Rπ

= = ∫           (16)              can be used ( )z zave.
v v=  

Now we are going to use eq. (13) for the velocity profile, although we assumed in 

eq. (11) that y << R. (where y = R - r). 

The plot at below shows the velocity profiles (with different wall roughness on the 

walls) compared with predications based on eq. (13). The ordinate is: 

( )

z zv (R) v (r) v (R ) v (y )
v *

R2.5ln R 5.5 2.5ln y 5.5 2.5 ln R ln y 2.5ln
y

+ + + +

+
+ + + +

+

−
= −

   = + − + = − =   

 

z zv (R) v (r) R2.5ln
v * y
−

∴ =  

This equation (represented by fig. below) is compared with experimental data in the 

following figure. 

 
Note that eq. (13) predicts an infinite velocity 

difference at y = 0, whereas the actual velocity must 

be finite. Of course, eq. (13) does not apply right up to 

the wall because very near wall the Reynolds stresses 

are not dominant. 
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Substituting eq. (13) in eq.(16) and integrating:    (H.W.) 

z
v *Rv v * 2.5ln 1.75
υ

  = +    
          (17) 

Now the friction velocity can be related to the friction factor, whose usual 

definition can be expressed in terms of the variables in this analysis: 
2

o

2
z

z

v *f 21 vv
2

τ

ρ

 
≡ =  

 
 

Thus;                                 zv 2
v * f

=            

Likewise, the usual definition of Reynolds number yields; 

z2 v R
Re

υ
≡  

Thus,                 


z

z
Re/2 f /2

v Rv *R v * Re f
v 2 2υ υ

= × =


 

Subs. in eq. (17), can be written as; 

( )1 1.77ln Re f 0.60
f
= −  

or                                   ( )10
1 4.07log Re f 0.60
f
= −  
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Fig. above shows that experimental data plotted as 1 / f  versus 1 / f  does indeed 

produce a linear relationship. The solid line in figure has slightly different values for the 

coefficients: 

( )10
1 4.07log Re f 0.60
f
= −                  for               62100 Re 5 10< < ×  

which is called Prandtl's (universal) law of friction. 
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